Regular and Chaotic Dynamics
Общая информация
Последний выпуск

Поиск публикаций
Поиск ссылок

Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS

Regul. Chaotic Dyn.:

Персональный вход:
Запомнить пароль
Забыли пароль?

Regul. Chaotic Dyn., 2018, том 23, выпуск 7-8, страницы 908–932 (Mi rcd374)  

Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)

Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction

Pavel V. Kuptsova, Sergey P. Kuznetsovbc

a Institute of electronics and mechanical engineering, Yuri Gagarin State Technical University of Saratov ul. Politekhnicheskaya 77, Saratov, 410054 Russia
b Kotel’nikov’s Institute of Radio-Engineering and Electronics of RAS, Saratov Branch, ul. Zelenaya 38, Saratov, 410019 Russia
c Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia

Аннотация: Pseudohyperbolic attractors are genuine strange chaotic attractors. They do not contain stable periodic orbits and are robust in the sense that such orbits do not appear under variations. The tangent space of these attractors is split into a direct sum of volume expanding and contracting subspaces and these subspaces never have tangencies with each other. Any contraction in the first subspace, if it occurs, is weaker than contractions in the second one. In this paper we analyze the local structure of several chaotic attractors recently suggested in the literature as pseudohyperbolic. The absence of tangencies and thus the presence of the pseudohyperbolicity is verified using the method of angles that includes computation of distributions of the angles between the corresponding tangent subspaces. Also, we analyze how volume expansion in the first subspace and the contraction in the second one occurs locally. For this purpose we introduce a family of instant Lyapunov exponents. Unlike the well-known finite time ones, the instant Lyapunov exponents show expansion or contraction on infinitesimal time intervals. Two types of instant Lyapunov exponents are defined. One is related to ordinary finite-time Lyapunov exponents computed in the course of standard algorithm for Lyapunov exponents. Their sums reveal instant volume expanding properties. The second type of instant Lyapunov exponents shows how covariant Lyapunov vectors grow or decay on infinitesimal time. Using both instant and finite-time Lyapunov exponents, we demonstrate that average expanding and contracting properties specific to pseudohyperbolicity are typically violated on infinitesimal time. Instantly volumes from the first subspace can sometimes be contacted, directions in the second subspace can sometimes be expanded, and the instant contraction in the first subspace can sometimes be stronger than the contraction in the second subspace.

Ключевые слова: chaotic attractor, strange pseudohyperbolic attractor, method of angles, hyperbolic isolation, Lyapunov exponents, finite-time Lyapunov exponents, instant Lyapunov exponents, covariant Lyapunov vectors

Финансовая поддержка Номер гранта
Российский научный фонд 15-12-20035
Российский фонд фундаментальных исследований 16-02-00135
The work of SPK on theoretical formulations was supported by the Russian Science Foundation under grant No 15-12-20035. The work of PVK on elaborating computer routines and numerical computations was supported by RFBR under grant No 16-02-00135.


Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 37D45,37D30,37D25,65L99,34D08
Поступила в редакцию: 07.09.2018
Принята в печать:06.11.2018
Язык публикации: английский

Образец цитирования: Pavel V. Kuptsov, Sergey P. Kuznetsov, “Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction”, Regul. Chaotic Dyn., 23:7-8 (2018), 908–932

Цитирование в формате AMSBIB
\by Pavel V. Kuptsov, Sergey P. Kuznetsov
\paper Lyapunov Analysis of Strange Pseudohyperbolic Attractors: Angles Between Tangent Subspaces, Local Volume Expansion and Contraction
\jour Regul. Chaotic Dyn.
\yr 2018
\vol 23
\issue 7-8
\pages 908--932

Образцы ссылок на эту страницу:

    ОТПРАВИТЬ: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. A. S. Gonchenko, E. A. Samylina, “On the region of existence of a discrete Lorenz attractor in the nonholonomic model of a celtic stone”, Radiophys. Quantum Electron., 62:5 (2019), 369–384  crossref  isi  scopus
    2. V A. Borisov , E. V. Vetchanin, I. S. Mamaev, “Motion of a smooth foil in a fluid under the action of external periodic forces. I”, Russ. J. Math. Phys., 26:4 (2019), 412–427  crossref  mathscinet  zmath  isi  scopus
    3. С. П. Кузнецов, “Автогенератор грубого гиперболического хаоса”, Известия вузов. ПНД, 27:6 (2019), 39–62  mathnet  crossref  isi  scopus
    4. V. Lucarini, A. Gritsun, “A new mathematical framework for atmospheric blocking events”, Clim. Dyn., 54:1-2 (2020), 575–598  crossref  isi  scopus
    5. P. V. Kuptsov, S. P. Kuznetsov, “Route to hyperbolic hyperchaos in a nonautonomous time-delay system”, Chaos, 30:11 (2020), 113113  crossref  mathscinet  zmath  isi  scopus
    6. V Yu. Bakhanova , A. O. Kazakov, E. Yu. Karatetskaia, A. D. Kozlov, K. A. Safonov, “On homoclinic attractors of three-dimensional flows”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 28:3 (2020), 231–258  crossref  isi  scopus
  • Просмотров:
    Эта страница:105
    Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2021