RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2019, Volume 24, Issue 1, Pages 80–89 (Mi rcd390)  

This article is cited in 1 scientific paper (total in 1 paper)

Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics

Anna I. Alliluevaabc, Andrei I. Shafarevichcbad

a National Research Centre “Kurchatov Institute”, pl. Akademika Kurchatova 1, Moscow, 123182 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Institute for Problems in Mechanics, pr. Vernadskogo 101-1, Moscow, 119526 Russia
d M. V. Lomonosov Moscow State University, Leninskie Gory 1, Moscow, 119991 Russia

Abstract: We study asymptotic solution of the Cauchy problem for linearized equations of gas dynamics with rapidly oscillating initial data. We construct the formal serie, satisfying this problem. This serie is naturally divided into three parts, corresponding to the hydrodynamic mode and two acoustic modes. The summands of the serie are expressed in terms of the Maslov canonic operator on moving Lagrangian manifolds. Evolution of the manifolds is governed by the corresponding classical Hamiltonian systems.

Keywords: Lagrangian manifolds, short-wave asymptotics, equations of gas dynamics

Funding Agency Grant Number
Russian Science Foundation 16-11-10282
This work was supported by the Russian Science Foundation (grant 16-11-10282).


DOI: https://doi.org/10.1134/S1560354719010040

References: PDF file   HTML file

Bibliographic databases:

MSC: 53C56, 35P20
Received: 22.12.2018
Accepted:09.01.2019
Language:

Citation: Anna I. Allilueva, Andrei I. Shafarevich, “Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics”, Regul. Chaotic Dyn., 24:1 (2019), 80–89

Citation in format AMSBIB
\Bibitem{AllSha19}
\by Anna I. Allilueva, Andrei I. Shafarevich
\paper Evolution of Lagrangian Manifolds and Asymptotic Solutions to the Linearized Equations of Gas Dynamics
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 1
\pages 80--89
\mathnet{http://mi.mathnet.ru/rcd390}
\crossref{https://doi.org/10.1134/S1560354719010040}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000457880700004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058161181}


Linking options:
  • http://mi.mathnet.ru/eng/rcd390
  • http://mi.mathnet.ru/eng/rcd/v24/i1/p80

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Allilueva A.I., Shafarevich A.I., “Localized Asymptotic Solutions of Linearized Equations of Gas Dynamics”, Russ. J. Math. Phys., 25:4 (2018), 415–422  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:49
    References:9

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020