RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2015, Volume 20, Issue 3, Pages 309–316 (Mi rcd45)  

This article is cited in 4 scientific papers (total in 4 papers)

On the Birkhoff Transformation in the Case of Complete Degeneracy of the Quadratic Part of the Hamiltonian

Anatoly P. Markeev

RAS Institute for Problems in Mechanics ul. Vernadskogo 101, str. 1, Moscow, 119526 Russia

Abstract: A time-periodic one-degree-of-freedom system is investigated. The system is assumed to have an equilibrium point in the neighborhood of which the Hamiltonian is represented as a convergent series. This series does not contain any second-degree terms, while the terms up to some finite degree $l$ do not depend explicitly on time. An algorithm for constructing a canonical transformation is proposed that simplifies the structure of the Hamiltonian to terms of degree $l$ inclusive.
As an application, a special case is considered when the expansion of the Hamiltonian begins with third-degree terms. For this case, sufficient conditions for instability of the equilibrium are obtained depending on the forms of the fourth and fifth degrees.

Keywords: Hamiltonian system, canonical transformations, stability

Funding Agency Grant Number
Russian Science Foundation 14-21-00068
The study was financed by the grant from the Russian Science Foundation (Project No.14-21-00068) and conducted at the Moscow Aviation Institute (National Research University).


DOI: https://doi.org/10.1134/S1560354715030077

References: PDF file   HTML file

Bibliographic databases:

MSC: 70H05, 70H15, 70E50
Received: 08.02.2015
Language:

Citation: Anatoly P. Markeev, “On the Birkhoff Transformation in the Case of Complete Degeneracy of the Quadratic Part of the Hamiltonian”, Regul. Chaotic Dyn., 20:3 (2015), 309–316

Citation in format AMSBIB
\Bibitem{Mar15}
\by Anatoly P. Markeev
\paper On the Birkhoff Transformation in the Case of Complete Degeneracy of the Quadratic Part of the Hamiltonian
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 3
\pages 309--316
\mathnet{http://mi.mathnet.ru/rcd45}
\crossref{https://doi.org/10.1134/S1560354715030077}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3357278}
\zmath{https://zbmath.org/?q=an:06488659}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20..309M}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84934963061}


Linking options:
  • http://mi.mathnet.ru/eng/rcd45
  • http://mi.mathnet.ru/eng/rcd/v20/i3/p309

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Translation

    This publication is cited in the following articles:
    1. A. P. Markeev, “Ob ustoichivosti nepodvizhnykh tochek otobrazhenii, sokhranyayuschikh ploschad”, Nelineinaya dinam., 11:3 (2015), 503–545  mathnet
    2. Boris S. Bardin, Victor Lanchares, “On the Stability of Periodic Hamiltonian Systems with One Degree of Freedom in the Case of Degeneracy”, Regul. Chaotic Dyn., 20:6 (2015), 627–648  mathnet  crossref  mathscinet  adsnasa
    3. Rodrigo Gutierrez, Claudio Vidal, “Stability of Equilibrium Points for a Hamiltonian Systems with One Degree of Freedom in One Degenerate Case”, Regul. Chaotic Dyn., 22:7 (2017), 880–892  mathnet  crossref
    4. V. V. Basov, A. S. Chermnykh, “Two-dimensional homogeneous cubic systems: classification and normal forms-III”, Vestnik St. Petersburg Univ. Math., 50:2 (2017), 97–110  crossref  mathscinet  zmath  isi  scopus
  • Number of views:
    This page:81
    References:21

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020