Общая информация
Последний выпуск

Поиск публикаций
Поиск ссылок

Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS

Regul. Chaotic Dyn.:

Персональный вход:
Запомнить пароль
Забыли пароль?

Regul. Chaotic Dyn., 2019, том 24, выпуск 2, страницы 212–233 (Mi rcd455)  

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges

Alexander A. Kilinab, Elena N. Pivovarovaca

a Udmurt State University, ul. Universitetskaya 1, Izhevsk, 426034 Russia
b Moscow Institute of Physics and Technology, Institutskii per. 9, Dolgoprudnyi, 141700 Russia
c Center for Technologies in Robotics and Mechatronics Components, Innopolis University, ul. Universitetskaya 1, Innopolis, 420500 Russia

Аннотация: This paper presents a qualitative analysis of the dynamics in a fixed reference frame of a wheel with sharp edges that rolls on a horizontal plane without slipping at the point of contact and without spinning relative to the vertical. The wheel is a ball that is symmetrically truncated on both sides and has a displaced center of mass. The dynamics of such a system is described by the model of the ball’s motion where the wheel rolls with its spherical part in contact with the supporting plane and the model of the disk’s motion where the contact point lies on the sharp edge of the wheel. A classification is given of possible motions of the wheel depending on whether there are transitions from its spherical part to sharp edges. An analysis is made of the behavior of the point of contact of the wheel with the plane for different values of the system parameters, first integrals and initial conditions. Conditions for boundedness and unboundedness of the wheel’s motion are obtained. Conditions for the fall of the wheel on the plane of sections are presented.

Ключевые слова: integrable system, system with discontinuity, nonholonomic constraint, bifurcation diagram, body of revolution, sharp edge, wheel, rubber body model, permanent rotations, dynamics in a fixed reference frame, resonance, quadrature, unbounded motion

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 18-08-00999-a
Министерство образования и науки Российской Федерации 5–100
This work was supported by Grant No. 18-08-00999-a of the Russian Foundation for Basic Research. The work of A. A. Kilin was carried out at MIPT under Project 5–100 for State Support for Leading Universities of the Russian Federation. The work of E.N. Pivovarova was carried out within the framework of the State Assignment of the Ministry of Education and Science of Russia (1.2404.2017/4.6) and was supported in part by the Moebius Contest Foundation for Young Scientists.


Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 70E15, 70E18, 70E40, 37Jxx
Поступила в редакцию: 17.01.2019
Принята в печать:07.03.2019
Язык публикации: английский

Образец цитирования: Alexander A. Kilin, Elena N. Pivovarova, “Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges”, Regul. Chaotic Dyn., 24:2 (2019), 212–233

Цитирование в формате AMSBIB
\by Alexander A. Kilin, Elena N. Pivovarova
\paper Qualitative Analysis of the Nonholonomic Rolling of a Rubber Wheel with Sharp Edges
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 2
\pages 212--233

Образцы ссылок на эту страницу:

    ОТПРАВИТЬ: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    Эта публикация цитируется в следующих статьяx:
    1. Ivan A. Bizyaev, Alexey V. Borisov, Ivan S. Mamaev, “Different Models of Rolling for a Robot Ball on a Plane as a Generalization of the Chaplygin Ball Problem”, Regul. Chaotic Dyn., 24:5 (2019), 560–582  mathnet  crossref  mathscinet
    2. Ivan S. Mamaev, Evgeny V. Vetchanin, “Dynamics of Rubber Chaplygin Sphere under Periodic Control”, Regul. Chaotic Dyn., 25:2 (2020), 215–236  mathnet  crossref
  • Просмотров:
    Эта страница:72
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020