RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2019, Volume 24, Issue 3, Pages 298–311 (Mi rcd479)  

Combinatorial Ricci Flow for Degenerate Circle Packing Metrics

Ruslan Yu. Pepaa, Theodore Yu. Popelenskyb

a Moscow Institute of International Relations, pr. Vernadskogo 76, Moscow, 119454 Russia
b Moscow State University, Faculty of Mechanics and Mathematics, Leninskie Gory 1, Moscow, 119991 Russia

Abstract: Chow and Luo [3] showed in 2003 that the combinatorial analogue of the Hamilton Ricci flow on surfaces converges under certain conditions to Thruston’s circle packing metric of constant curvature. The combinatorial setting includes weights defined for edges of a triangulation. A crucial assumption in [3] was that the weights are nonnegative. Recently we have shown that the same statement on convergence can be proved under a weaker condition: some weights can be negative and should satisfy certain inequalities [4].
On the other hand, for weights not satisfying conditions of Chow – Luo’s theorem we observed in numerical simulation a degeneration of the metric with certain regular behaviour patterns [5]. In this note we introduce degenerate circle packing metrics, and under weakened conditions on weights we prove that under certain assumptions for any initial metric an analogue of the combinatorial Ricci flow has a unique limit metric with a constant curvature outside of singularities.

Keywords: combinatorial Ricci flow, degenerate circle packing metric

Funding Agency Grant Number
Russian Science Foundation 16-11-10069
The work was supported by the Russian Science Foundation (grant No. 16-11-10069).


DOI: https://doi.org/10.1134/S1560354719030043

References: PDF file   HTML file

Bibliographic databases:

MSC: 52C26
Received: 09.02.2019
Accepted:29.04.2019
Language:

Citation: Ruslan Yu. Pepa, Theodore Yu. Popelensky, “Combinatorial Ricci Flow for Degenerate Circle Packing Metrics”, Regul. Chaotic Dyn., 24:3 (2019), 298–311

Citation in format AMSBIB
\Bibitem{PepPop19}
\by Ruslan Yu. Pepa, Theodore Yu. Popelensky
\paper Combinatorial Ricci Flow for Degenerate Circle Packing Metrics
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 3
\pages 298--311
\mathnet{http://mi.mathnet.ru/rcd479}
\crossref{https://doi.org/10.1134/S1560354719030043}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000470233800004}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066614483}


Linking options:
  • http://mi.mathnet.ru/eng/rcd479
  • http://mi.mathnet.ru/eng/rcd/v24/i3/p298

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:31
    References:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020