RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2019, том 24, выпуск 4, страницы 370–391 (Mi rcd531)  

Singular Reduction of the $2$-Body Problem on the $3$-Sphere and the $4$-Dimensional Spinning Top

Philip Arathoon

University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL, UK

Аннотация: We consider the dynamics and symplectic reduction of the $2$-body problem on a sphere of arbitrary dimension. It suffices to consider the case when the sphere is $3$-dimensional. As the $3$-sphere is a group it acts on itself by left and right multiplication and these together generate the action of the $SO(4)$ symmetry on the sphere. This gives rise to a notion of left and right momenta for the problem, and allows for a reduction in stages, first by the left and then the right, or vice versa. The intermediate reduced spaces obtained by left or right reduction are shown to be coadjoint orbits of the special Euclidean group $SE(4)$. The full reduced spaces are generically $4$-dimensional and we describe these spaces and their singular strata.
The dynamics of the $2$-body problem descend through a double cover to give a dynamical system on $SO(4)$ which, after reduction and for a particular choice of Hamiltonian, coincides with that of a $4$-dimensional spinning top with symmetry. This connection allows us to “hit two birds with one stone” and derive results about both the spinning top and the $2$-body problem simultaneously. We provide the equations of motion on the reduced spaces and fully classify the relative equilibria and discuss their stability.

Ключевые слова: $2$-body problem, Lagrange top, reduction, relative equilibria

Финансовая поддержка Номер гранта
EPSRC - Engineering and Physical Sciences Research Council
This work was conducted as part of the author’s PhD at The University of Manchester and was funded by a Doctoral Training Award from the Engineering and Physical Sciences Research Council (EPSRC).


DOI: https://doi.org/10.1134/S1560354719040026

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 70F05, 53D20
Поступила в редакцию: 11.04.2019
Принята в печать:12.06.2019
Язык публикации: английский

Образец цитирования: Philip Arathoon, “Singular Reduction of the $2$-Body Problem on the $3$-Sphere and the $4$-Dimensional Spinning Top”, Regul. Chaotic Dyn., 24:4 (2019), 370–391

Цитирование в формате AMSBIB
\RBibitem{Ara19}
\by Philip Arathoon
\paper Singular Reduction of the $2$-Body Problem on the $3$-Sphere and the $4$-Dimensional Spinning Top
\jour Regul. Chaotic Dyn.
\yr 2019
\vol 24
\issue 4
\pages 370--391
\mathnet{http://mi.mathnet.ru/rcd531}
\crossref{https://doi.org/10.1134/S1560354719040026}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3989313}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000478912400002}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070187347}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd531
  • http://mi.mathnet.ru/rus/rcd/v24/i4/p370

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:24
    Литература:8
     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2020