RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2015, Volume 20, Issue 1, Pages 1–18 (Mi rcd54)  

This article is cited in 4 scientific papers (total in 4 papers)

Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems

Gabriella Schirinzia, Massimiliano Guzzob

a Università del Salento, Dipartimento di Matematica e Fisica, Via per Arnesano - 73100 Lecce, Italy
b Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste, 63 - 35121 Padova, Italy

Abstract: We describe a new algorithm for the numerical verification of steepness, a necessary property for the application of Nekhoroshev’s theorem, of functions of three and four variables. Specifically, by analyzing the Taylor expansion of order four, the algorithm analyzes the steepness of functions whose Taylor expansion of order three is not steep. In this way, we provide numerical evidence of steepness of the Birkhoff normal form around the Lagrangian equilibrium points L4–L5 of the spatial restricted three-body problem (for the only value of the reduced mass for which the Nekhoroshev stability was still unknown), and of the four-degreesof-freedom Hamiltonian system obtained from the Fermi–Pasta–Ulam problem by setting the number of particles equal to four.

Keywords: Nekhoroshev’s theorem, steepness, three-body-problem, Fermi–Pasta–Ulam

Funding Agency Grant Number
PRIN 2010JJ4KPA_009
CaRiPaRo 11/2012
This research has been supported by the Italian project PRIN “Teorie geometriche e analitiche dei sistemi Hamiltoniani in dimensioni finite e infinite”. M.Guzzo has been also supported by CaRiPaRo “Nonlinear Partial Differential Equations: models, analysis, and control-theoretic problems” of the University of Padova.


DOI: https://doi.org/10.1134/S1560354715010013

References: PDF file   HTML file

Bibliographic databases:

MSC: 70F15, 70H08, 37J40
Received: 06.06.2014
Language:

Citation: Gabriella Schirinzi, Massimiliano Guzzo, “Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems”, Regul. Chaotic Dyn., 20:1 (2015), 1–18

Citation in format AMSBIB
\Bibitem{SchGuz15}
\by Gabriella Schirinzi, Massimiliano Guzzo
\paper Numerical Verification of the Steepness of Three and Four Degrees of Freedom Hamiltonian Systems
\jour Regul. Chaotic Dyn.
\yr 2015
\vol 20
\issue 1
\pages 1--18
\mathnet{http://mi.mathnet.ru/rcd54}
\crossref{https://doi.org/10.1134/S1560354715010013}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3304934}
\zmath{https://zbmath.org/?q=an:06468419}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2015RCD....20....1S}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000349024900001}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944180419}


Linking options:
  • http://mi.mathnet.ru/eng/rcd54
  • http://mi.mathnet.ru/eng/rcd/v20/i1/p1

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. M. Guzzo, “The nekhoroshev theorem and long-term stabilities in the solar system”, Serb. Astron. J., 190 (2015), 1–10  crossref  isi  scopus
    2. Massimiliano Guzzo, Elena Lega, “The Nekhoroshev Theorem and the Observation of Long-term Diffusion in Hamiltonian Systems”, Regul. Chaotic Dyn., 21:6 (2016), 707–719  mathnet  crossref  mathscinet
    3. L. Chierchia, M. A. Faraggiana, M. Guzzo, “On steepness of 3-jet non-degenerate functions”, Ann. Mat. Pura Appl., 198:6 (2019), 2151–2165  crossref  mathscinet  zmath  isi  scopus
    4. Daniela Cárcamo-Díaz, Jesús F. Palacián, Claudio Vidal, Patricia Yanguas, “On the Nonlinear Stability of the Triangular Points in the Circular Spatial Restricted Three-body Problem”, Regul. Chaotic Dyn., 25:2 (2020), 131–148  mathnet  crossref
  • Number of views:
    This page:69
    References:17

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020