Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2008, Volume 13, Issue 5, Pages 431–434 (Mi rcd593)  

This article is cited in 1 scientific paper (total in 1 paper)

Nonholonomic mechanics

Gauss Principle and Realization of Constraints

V. V. Kozlov

V.A. Steklov Institute of Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991 Russia

Abstract: The paper generalizes the classical Gauss principle for non-constrained dynamical systems. For large anisotropic external forces of viscous friction our statement transforms into the common Gauss principle for systems with constraints.

Keywords: Gauss principle, constraints, anisotropic friction

DOI: https://doi.org/10.1134/S1560354708050055


Bibliographic databases:

MSC: 70F25, 37J60
Received: 13.07.2008
Accepted:09.09.2008
Language:

Citation: V. V. Kozlov, “Gauss Principle and Realization of Constraints”, Regul. Chaotic Dyn., 13:5 (2008), 431–434

Citation in format AMSBIB
\Bibitem{Koz08}
\by V.~V.~Kozlov
\paper Gauss Principle and Realization of Constraints
\jour Regul. Chaotic Dyn.
\yr 2008
\vol 13
\issue 5
\pages 431--434
\mathnet{http://mi.mathnet.ru/rcd593}
\crossref{https://doi.org/10.1134/S1560354708050055}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2448341}
\zmath{https://zbmath.org/?q=an:1229.70040}


Linking options:
  • http://mi.mathnet.ru/eng/rcd593
  • http://mi.mathnet.ru/eng/rcd/v13/i5/p431

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Alexander P. Ivanov, “On the Variational Formulation of the Dynamics of Systems with Friction”, Regul. Chaotic Dyn., 19:1 (2014), 100–115  mathnet  crossref  mathscinet  zmath
  • Number of views:
    This page:20

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021