RUS  ENG                AMSBIB
-


RSS
RSS



Regul. Chaotic Dyn.:
:
:
:
:






:
:
:
?


Regul. Chaotic Dyn., 2006,  11,  1,  67–81 (Mi rcd658)  

The LagrangeD'AlembertPoincaré equations and integrability for the rolling disk

H. Cendra, V. Diaz

Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253 Bahía Blanca (8000), Argentina

: Classical nonholonomic systems are described by the Lagranged'Alembert principle. The presence of symmetry leads, upon the choice of an arbitrary principal connection, to a reduced variational principle and to the Lagranged'AlembertPoincaré reduced equations. The case of rolling bodies has a long history and it has been the purpose of many works in recent times, in part because of its applications to robotics. In this paper we study the classical example of the rolling disk. We consider a natural abelian group of symmetry and a natural connection for this example and obtain the corresponding Lagranged'AlembertPoincaré equations written in terms of natural reduced variables. One interesting feature of this reduced equations is that they can be easily transformed into a single ordinary equation of second order, which is a Heun's equation.

 : rolling disk, nonholonomic mechanics, integrability, Heun's equation

DOI: https://doi.org/10.1070/RD2006v011n01ABEH000335


:

:
MSC: 70F25, 37J60,70H33
: 19.04.2005
:27.07.2005
:

: H. Cendra, V. Diaz, “The LagrangeD'AlembertPoincaré equations and integrability for the rolling disk”, Regul. Chaotic Dyn., 11:1 (2006), 67–81

AMSBIB
\RBibitem{CenDia06}
\by H.~Cendra, V.~Diaz
\paper The LagrangeD'AlembertPoincar\'{e} equations and integrability for the rolling disk
\jour Regul. Chaotic Dyn.
\yr 2006
\vol 11
\issue 1
\pages 67--81
\mathnet{http://mi.mathnet.ru/rcd658}
\crossref{https://doi.org/10.1070/RD2006v011n01ABEH000335}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2222433}
\zmath{https://zbmath.org/?q=an:1133.70325}


:
  • http://mi.mathnet.ru/rcd658
  • http://mi.mathnet.ru/rus/rcd/v11/i1/p67

    : VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • :
    :7
     
    :
          © . . . , 2020