RUS  ENG ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regul. Chaotic Dyn., 2016, том 21, выпуск 1, страницы 24–65 (Mi rcd66)  

Topological Atlas of the Kowalevski–Sokolov Top

Mikhail P. Kharlamova, Pavel E. Ryabovb, Alexander Yu. Savushkina

a Russian Academy of National Economy and Public Administration, ul. Gagarina 8, Volgograd, 400131, Russia
b Financial University under the Government of Russian Federation, Leningradskiy pr. 49, Moscow, 125993, Russia

Аннотация: We investigate the phase topology of the integrable Hamiltonian system on $e(3)$ found by V. V. Sokolov (2001) and generalizing the Kowalevski case. This generalization contains, along with a homogeneous potential force field, gyroscopic forces depending on the configurational variables. The relative equilibria are classified, their type is calculated and the character of stability is defined. The Smale diagrams of the case are found and the isoenergy manifolds of the reduced systems with two degrees of freedom are classified. The set of critical points of the momentum map is represented as a union of critical subsystems; each critical subsystem is a one-parameter family of almost Hamiltonian systems with one degree of freedom. For all critical points we explicitly calculate the characteristic values defining their type. We obtain the equations of the diagram of the momentum map and give a classification of isoenergy and isomomentum diagrams equipped with the description of regular integral manifolds and their bifurcations. We construct the Smale–Fomenko diagrams which, when considered in the enhanced space of the energy-momentum constants and the essential physical parameters, separate 25 different types of topological invariants called the Fomenko graphs. We find all marked loop molecules of rank 0 nondegenerate critical points and of rank 1 degenerate periodic trajectories. Analyzing the cross-sections of the isointegral equipped diagrams, we get a complete list of the Fomenko graphs. The marks on them producing the exact topological invariants of Fomenko–Zieschang can be found from previous investigations of two partial cases with some additions obtained from the loop molecules or by a straightforward calculation using the separation of variables.

Ключевые слова: integrable Hamiltonian systems, relative equilibria, isoenergy surfaces, critical subsystems, bifurcation diagrams, rough topological invariants

Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 14-01-00119
15-41-02049
16-01-00170
This work was partially supported by RFBR and the authorities of the Volgograd Region, research projects No. 14-01-00119, 15-41-02049, and 16-01-00170.


DOI: https://doi.org/10.1134/S1560354716010032

Список литературы: PDF файл   HTML файл

Реферативные базы данных:

Тип публикации: Статья
MSC: 70E05, 70E17, 37J35, 34A05
Поступила в редакцию: 15.07.2015
Принята в печать:22.09.2015
Язык публикации: английский

Образец цитирования: Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65

Цитирование в формате AMSBIB
\RBibitem{KhaRyaSav16}
\by Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin
\paper Topological Atlas of the Kowalevski–Sokolov Top
\jour Regul. Chaotic Dyn.
\yr 2016
\vol 21
\issue 1
\pages 24--65
\mathnet{http://mi.mathnet.ru/rcd66}
\crossref{https://doi.org/10.1134/S1560354716010032}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3457075}
\zmath{https://zbmath.org/?q=an:06580141}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000373028300003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84957556146}


Образцы ссылок на эту страницу:
  • http://mi.mathnet.ru/rcd66
  • http://mi.mathnet.ru/rus/rcd/v21/i1/p24

    ОТПРАВИТЬ: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Просмотров:
    Эта страница:103
    Литература:21

     
    Обратная связь:
     Пользовательское соглашение  Регистрация  Логотипы © Математический институт им. В. А. Стеклова РАН, 2019