Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2001, Volume 6, Issue 3, Pages 235–251 (Mi rcd843)  

This article is cited in 5 scientific papers (total in 5 papers)

Kinetics of Collisionless Continuous Medium

V. V. Kozlov

Department of Mechanics and Mathematics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia

Abstract: In this article we develop Poincaré ideas about a heat balance of ideal gas considered as a collisionless continuous medium. We obtain the theorems on diffusion in nondegenerate completely integrable systems. As a corollary we show that for any initial distribution the gas will be eventually irreversibly and uniformly distributed over all volume, although every particle during this process approaches arbitrarily close to the initial position indefinitely many times. However, such individual returnability is not uniform, which results in diffusion in a reversible and conservative system. Balancing of pressure and internal energy of ideal gas is proved, the formulas for limit values of these quantities are given and the classical law for ideal gas in a heat balance is deduced. It is shown that the increase of entropy of gas under the adiabatic extension follows from the law of motion of a collisionless continuous medium.

DOI: https://doi.org/10.1070/RD2001v006n03ABEH000175


Bibliographic databases:

MSC: 37H10, 70F45
Received: 08.06.2001
Language:

Citation: V. V. Kozlov, “Kinetics of Collisionless Continuous Medium”, Regul. Chaotic Dyn., 6:3 (2001), 235–251

Citation in format AMSBIB
\Bibitem{Koz01}
\by V. V. Kozlov
\paper Kinetics of Collisionless Continuous Medium
\jour Regul. Chaotic Dyn.
\yr 2001
\vol 6
\issue 3
\pages 235--251
\mathnet{http://mi.mathnet.ru/rcd843}
\crossref{https://doi.org/10.1070/RD2001v006n03ABEH000175}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1860145}
\zmath{https://zbmath.org/?q=an:1006.82011}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2001RCD.....6..235K}


Linking options:
  • http://mi.mathnet.ru/eng/rcd843
  • http://mi.mathnet.ru/eng/rcd/v6/i3/p235

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. V. Kozlov, D. V. Treschev, “Evolution of Measures in the Phase Space of Nonlinear Hamiltonian Systems”, Theoret. and Math. Phys., 136:3 (2003), 1325–1335  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. J. Math. Sci. (N. Y.), 128:2 (2005), 2791–2797  mathnet  crossref  mathscinet  zmath
    3. V. V. Kozlov, “Kineticheskoe uravnenie Vlasova, dinamika sploshnykh sred i turbulentnost”, Nelineinaya dinam., 6:3 (2010), 489–512  mathnet  elib
    4. V. V. Kozlov, “Polynomial conservation laws for the Lorentz gas and the Boltzmann–Gibbs gas”, Russian Math. Surveys, 71:2 (2016), 253–290  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87  mathnet  crossref  crossref  mathscinet  isi  elib
  • Number of views:
    This page:17

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021