Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2000, Volume 5, Issue 2, Pages 129–138 (Mi rcd867)  

This article is cited in 2 scientific papers (total in 2 papers)

Billiards, Invariant Measures, and Equilibrium Thermodynamics

V. V. Kozlov

Department of Mechanics and Mathematics, Moscow State University, Vorob'ievy Gory, 119899, Moscow, Russia

Abstract: The questions of justification of the Gibbs canonical distribution for systems with elastic impacts are discussed. A special attention is paid to the description of probability measures with densities depending on the system energy.

DOI: https://doi.org/10.1070/RD2000v005n02ABEH000136


Bibliographic databases:

MSC: 58F36, 82C22, 70F07
Received: 12.12.1999
Language:

Citation: V. V. Kozlov, “Billiards, Invariant Measures, and Equilibrium Thermodynamics”, Regul. Chaotic Dyn., 5:2 (2000), 129–138

Citation in format AMSBIB
\Bibitem{Koz00}
\by V. V. Kozlov
\paper Billiards, Invariant Measures, and Equilibrium Thermodynamics
\jour Regul. Chaotic Dyn.
\yr 2000
\vol 5
\issue 2
\pages 129--138
\mathnet{http://mi.mathnet.ru/rcd867}
\crossref{https://doi.org/10.1070/RD2000v005n02ABEH000136}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1780705}
\zmath{https://zbmath.org/?q=an:1050.82028}


Linking options:
  • http://mi.mathnet.ru/eng/rcd867
  • http://mi.mathnet.ru/eng/rcd/v5/i2/p129

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. Yu. Loskutov, A. B. Ryabov, A. K. Krasnova, O. A. Chichigina, “Bilyardy s vozmuschaemymi granitsami i nekotorye ikh svoistva”, Nelineinaya dinam., 6:3 (2010), 573–604  mathnet  elib
    2. V. Dragović, M. Radnović, “Integrable billiards and quadrics”, Russian Math. Surveys, 65:2 (2010), 319–379  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
  • Number of views:
    This page:13

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021