RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regul. Chaotic Dyn., 2013, Volume 18, Issue 1-2, Pages 118–125 (Mi rcd99)  

Normal and Hemiparetic Walking

Friedrich Pfeiffera, Eberhard Königb

a Lehrstuhl fuer Angewandte Mechanik, TU-Muenchen, Boltzmannstrasse 15, D-85748 Garching, Germany
b Neurologische Klinik Bad Aibling, Kolbermoorer Str. 72, D-83043 Bad Aibling, Germany

Abstract: The idea of a model-based control of rehabilitation for hemiparetic patients requires efficient models of human walking, healthy walking as well as hemiparetic walking. Such models are presented in this paper. They include 42 degrees of freedom and allow especially the evaluation of kinetic magnitudes with the goal to evaluate measures for the hardness of hemiparesis. As far as feasible, the simulations have been compared successfully with measurements, thus improving the confidence level for an application in clinical practice. The paper is mainly based on the dissertation [19].

Keywords: human walking, normal and hemiparetic walking, multibody system approach

Funding Agency Grant Number
Deutsche Forschungsgemeinschaft
The research work presented in this paper is supported by a contract with the DFG (Deutsche Forschungsgemeinschaft, SFB 462 “Sensomotorik”).


DOI: https://doi.org/10.1134/S1560354713010085

References: PDF file   HTML file

Bibliographic databases:

MSC: 70-XX, 92-XX, 34-XX, 37-X
Received: 05.09.2012
Accepted:30.11.2012
Language:

Citation: Friedrich Pfeiffer, Eberhard König, “Normal and Hemiparetic Walking”, Regul. Chaotic Dyn., 18:1-2 (2013), 118–125

Citation in format AMSBIB
\Bibitem{PfeKon13}
\by Friedrich Pfeiffer, Eberhard K\"onig
\paper Normal and Hemiparetic Walking
\jour Regul. Chaotic Dyn.
\yr 2013
\vol 18
\issue 1-2
\pages 118--125
\mathnet{http://mi.mathnet.ru/rcd99}
\crossref{https://doi.org/10.1134/S1560354713010085}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3040986}
\zmath{https://zbmath.org/?q=an:1273.70013}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000317623400008}


Linking options:
  • http://mi.mathnet.ru/eng/rcd99
  • http://mi.mathnet.ru/eng/rcd/v18/i1/p118

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:190
    References:26

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019