RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
Main page
About this project
Software
Classifications
Links
Terms of Use

Search papers
Search references

RSS
Current issues
Archive issues
What is RSS






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russ. J. Math. Phys., 2014, Volume 21, Issue 2, Pages 226–241 (Mi rjmph7)  

Conservation laws of generalized billiards that are polynomial in momenta

V. V. Kozlov

Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, Russia

Abstract: This paper deals with dynamics particles moving on a Euclidean $n$-dimensional torus or in an $n$-dimensional parallelepiped box in a force field whose potential is proportional to the characteristic function of the region $D$ with a regular boundary. After reaching this region, the trajectory of the particle is refracted according to the law which resembles the Snell–Descartes law from geometrical optics. When the energies are small, the particle does not reach the region $D$ and elastically bounces off its boundary. In this case, we obtain a dynamical system of billiard type (which was intensely studied with respect to strictly convex regions). In addition, the paper discusses the problem of the existence of nontrivial first integrals that are polynomials in momenta with summable coefficients and are functionally independent with the energy integral. Conditions for the geometry of the boundary of the region $D$ under which the problem does not admit nontrivial polynomial first integrals are found. Examples of nonconvex regions are given; for these regions the corresponding dynamical system is obviously nonergodic for fixed energy values (including small ones), however, it does not admit polynomial conservation laws independent of the energy integral.

DOI: https://doi.org/10.1134/S1061920814020083


Bibliographic databases:

Received: 24.03.2014
Language:

Linking options:
  • http://mi.mathnet.ru/eng/rjmph7

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Number of views:
    This page:43

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019