RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1999, Volume 54, Issue 1(325), Pages 117–170 (Mi umn118)  

This article is cited in 11 scientific papers (total in 11 papers)

Simple homotopy type of the Novikov complex and the Lefschetz $\zeta$-function of a gradient flow

A. V. Pajitnov

Université de Nantes

DOI: https://doi.org/10.4213/rm118

Full text: PDF file (597 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1999, 54:1, 119–169

Bibliographic databases:

UDC: 517.98
MSC: Primary 57R70, 58E05; Secondary 14G10, 58F09
Received: 22.06.1998

Citation: A. V. Pajitnov, “Simple homotopy type of the Novikov complex and the Lefschetz $\zeta$-function of a gradient flow”, Uspekhi Mat. Nauk, 54:1(325) (1999), 117–170; Russian Math. Surveys, 54:1 (1999), 119–169

Citation in format AMSBIB
\Bibitem{Paj99}
\by A.~V.~Pajitnov
\paper Simple homotopy type of the Novikov complex and the Lefschetz $\zeta$-function of a~gradient flow
\jour Uspekhi Mat. Nauk
\yr 1999
\vol 54
\issue 1(325)
\pages 117--170
\mathnet{http://mi.mathnet.ru/umn118}
\crossref{https://doi.org/10.4213/rm118}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1706835}
\zmath{https://zbmath.org/?q=an:0939.57026}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54..119P}
\transl
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 1
\pages 119--169
\crossref{https://doi.org/10.1070/rm1999v054n01ABEH000118}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000082670200005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0040205726}


Linking options:
  • http://mi.mathnet.ru/eng/umn118
  • https://doi.org/10.4213/rm118
  • http://mi.mathnet.ru/eng/umn/v54/i1/p117

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Pajitnov A.V., “Closed orbits of gradient flows and logarithms of non-Abelian Witt vectors”, $K$-Theory, 21:4 (2000), 301–324  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    2. Hutchings M., “Reidemeister torsion in generalized Morse theory”, Forum Math., 14:2 (2002), 209–244  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Schütz D., “Gradient flows of closed 1-forms and their closed orbits”, Forum Math., 14:4 (2002), 509–537  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Ranicki A., “The algebraic construction of the Novikov complex of a circle-valued Morse function”, Math. Ann., 322:4 (2002), 745–785  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Schütz D., “One-parameter fixed-point theory and gradient flows of closed 1-forms”, $K$-Theory, 25:1 (2002), 59–97  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    6. Sheiham D., “Whitehead groups of localizations and the endomorphism class group”, J. Algebra, 270:1 (2003), 261–280  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Schutz D., “Geometric chain homotopy equivalences between Novikov complexes”, High-Dimensional Manifold Topology, 2003, 469–498  crossref  mathscinet  zmath  isi
    8. Schütz D., “Zeta functions for gradients of closed 1-forms”, Topology Appl., 144:1-3 (2004), 147–160  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Goda H., Pajitnov A.V., “Dynamics of gradient flows in the half-transversal Morse theory”, Proc. Japan Acad. Ser. A Math. Sci., 85:1 (2009), 6–10  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Kitayama T., “Non-Commutative Reidemeister Torsion and Morse-Novikov Theory”, Proceedings of the American Mathematical Society, 138:9 (2010), 3345–3360  crossref  mathscinet  zmath  isi
    11. St. Petersburg Math. J., 26:3 (2015), 441–461  mathnet  crossref  mathscinet  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:171
    Full text:74
    References:24
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019