Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1994, Volume 49, Issue 4(298), Pages 157–158 (Mi umn1219)  

This article is cited in 10 scientific papers (total in 10 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

An example of a bounded approximately compact set that is not compact

P. A. Borodin

M. V. Lomonosov Moscow State University

Full text: PDF file (116 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1994, 49:4, 153–154

Bibliographic databases:

MSC: 46B45, 46B50, 54D30
Received: 03.05.1994

Citation: P. A. Borodin, “An example of a bounded approximately compact set that is not compact”, Uspekhi Mat. Nauk, 49:4(298) (1994), 157–158; Russian Math. Surveys, 49:4 (1994), 153–154

Citation in format AMSBIB
\Bibitem{Bor94}
\by P.~A.~Borodin
\paper An example of a~bounded approximately compact set that is not compact
\jour Uspekhi Mat. Nauk
\yr 1994
\vol 49
\issue 4(298)
\pages 157--158
\mathnet{http://mi.mathnet.ru/umn1219}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1309448}
\zmath{https://zbmath.org/?q=an:0883.46008}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49..153B}
\transl
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 4
\pages 153--154
\crossref{https://doi.org/10.1070/RM1994v049n04ABEH002396}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994RP64400009}


Linking options:
  • http://mi.mathnet.ru/eng/umn1219
  • http://mi.mathnet.ru/eng/umn/v49/i4/p157

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Cobzas, S, “Geometric properties of Banach spaces and the existence of nearest and farthest points”, Abstract and Applied Analysis, 2005, no. 3, 259  crossref  mathscinet  zmath  adsnasa  isi
    2. I. A. Pyatyshev, “Operations on Approximatively Compact Sets”, Math. Notes, 82:5 (2007), 653–659  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. I. A. Pyatyshev, “An example of a bounded approximatively compact set which is not locally compact”, Russian Math. Surveys, 62:5 (2007), 1007–1008  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. V. S. Balaganskii, “On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal”, Proc. Steklov Inst. Math. (Suppl.), 277, suppl. 1 (2012), 48–54  mathnet  crossref  isi  elib
    5. N. Hussain, M. A. Kutbi, P. Salimi, “Best Proximity Point Results for Modified –Proximal Rational Contractions”, Abstract and Applied Analysis, 2013 (2013), 1  crossref
    6. P. A. Borodin, “Examples of Sets with Given Approximation Properties in $WCG$-Space”, Math. Notes, 94:5 (2013), 605–608  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    7. Nashine H.K., Kumam P., Vetro C., “Best Proximity Point Theorems for Rational Proximal Contractions”, Fixed Point Theory Appl., 2013, 95  crossref  isi
    8. Kutbi M.A. Chandok S. Sintunavarat W., “Optimal Solutions For Nonlinear Proximal C-N-Contraction Mapping in Metric Space”, J. Inequal. Appl., 2014, 193  crossref  isi
    9. A. R. Alimov, I. G. Tsar'kov, “Connectedness and other geometric properties of suns and Chebyshev sets”, J. Math. Sci., 217:6 (2016), 683–730  mathnet  crossref  mathscinet
    10. A. R. Alimov, I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:420
    Full text:171
    References:27
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021