Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1994, Volume 49, Issue 6(300), Pages 111–150 (Mi umn1249)  

This article is cited in 10 scientific papers (total in 10 papers)

Integrated semigroups and $C$-semigroups. Well-posedness and regularization of differential-operator problems

I. V. Mel'nikovaa, A. I. Filinkovb

a Ural State University
b Urals State Pedagogical University

Full text: PDF file (1794 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1994, 49:6, 115–155

Bibliographic databases:

UDC: 517.9
MSC: 47D62, 47D60, 47A52
Received: 11.01.1993

Citation: I. V. Mel'nikova, A. I. Filinkov, “Integrated semigroups and $C$-semigroups. Well-posedness and regularization of differential-operator problems”, Uspekhi Mat. Nauk, 49:6(300) (1994), 111–150; Russian Math. Surveys, 49:6 (1994), 115–155

Citation in format AMSBIB
\Bibitem{MelFil94}
\by I.~V.~Mel'nikova, A.~I.~Filinkov
\paper Integrated semigroups and $C$-semigroups. Well-posedness and regularization of differential-operator problems
\jour Uspekhi Mat. Nauk
\yr 1994
\vol 49
\issue 6(300)
\pages 111--150
\mathnet{http://mi.mathnet.ru/umn1249}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1316868}
\zmath{https://zbmath.org/?q=an:0889.47024}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1994RuMaS..49..115M}
\transl
\jour Russian Math. Surveys
\yr 1994
\vol 49
\issue 6
\pages 115--155
\crossref{https://doi.org/10.1070/RM1994v049n06ABEH002449}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1994TD11100004}


Linking options:
  • http://mi.mathnet.ru/eng/umn1249
  • http://mi.mathnet.ru/eng/umn/v49/i6/p111

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. V. Mel'nikova, “Properties of Lions's d-Semigroups and Generalized Well-Posedness of the Cauchy Problem”, Funct. Anal. Appl., 31:3 (1997), 167–175  mathnet  crossref  crossref  mathscinet  zmath  isi
    2. A. S. Makarov, “O nekotorykh klassakh obobschennykh i $g$-integrirovannykh polugrupp”, Vestnik ChelGU, 1999, no. 5, 48–55  mathnet
    3. Quan Zheng, “Applications of semigroups of operators to non-elliptic differential operators”, Chinese Sci Bull, 45:8 (2000), 673  crossref  mathscinet  zmath  isi
    4. U. A. Anufrieva, I. V. Mel'nikova, “Peculiarities and regularization of ill-posed Cauchy problems with differential operators”, Journal of Mathematical Sciences, 148:4 (2008), 481–632  mathnet  crossref  mathscinet  zmath  elib
    5. A. G. Baskakov, K. I. Chernyshov, “On Distribution Semigroups with a Singularity at Zero and Bounded Solutions of Differential Inclusions”, Math. Notes, 79:1 (2006), 18–30  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. A. V. Glushak, “Inverse problems for evolution equations with fractional integrals at boundary-value conditions”, Journal of Mathematical Sciences, 164:4 (2010), 518–530  mathnet  crossref  mathscinet  elib
    7. Nguyen Khac Diep, V. F. Chistyakov, “A numerical method for solving partial differential algebraic equations”, Comput. Math. Math. Phys., 53:6 (2013), 766–776  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    8. A. A. Zamyshlyaeva, A. S. Muravyev, “Inverse problem for Sobolev type equation of the second order”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 8:3 (2016), 5–12  mathnet  crossref  elib
    9. A. V. Glushak, “Semeistvo operatornykh funktsii Besselya”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 187, VINITI RAN, M., 2020, 36–43  mathnet  crossref
    10. A. V. Glushak, “Operatornaya funktsiya Makdonalda i nepolnaya zadacha Koshi dlya uravneniya Eilera—Puassona—Darbu”, Materialy mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu v prikladnykh naukakh “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Belgorod, 20–24 avgusta 2019 g., Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 195, VINITI RAN, M., 2021, 35–43  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:383
    Full text:162
    References:37
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021