RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1993, Volume 48, Issue 6(294), Pages 141–142 (Mi umn1347)  

This article is cited in 2 scientific papers (total in 2 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A semiprime $PI$-ring having an exact module with a Krull dimension is a Goldie ring

K. I. Beidar, V. T. Markov

M. V. Lomonosov Moscow State University

Full text: PDF file (106 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1993, 48:6, 158

Bibliographic databases:

MSC: 16P60, 16R20, 16P40, 16P70
Received: 15.03.1993

Citation: K. I. Beidar, V. T. Markov, “A semiprime $PI$-ring having an exact module with a Krull dimension is a Goldie ring”, Uspekhi Mat. Nauk, 48:6(294) (1993), 141–142; Russian Math. Surveys, 48:6 (1993), 158

Citation in format AMSBIB
\Bibitem{BeiMar93}
\by K.~I.~Beidar, V.~T.~Markov
\paper A~semiprime $PI$-ring having an exact module with a~Krull dimension is a~Goldie ring
\jour Uspekhi Mat. Nauk
\yr 1993
\vol 48
\issue 6(294)
\pages 141--142
\mathnet{http://mi.mathnet.ru/umn1347}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1264158}
\zmath{https://zbmath.org/?q=an:0833.16023}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1993RuMaS..48..158B}
\transl
\jour Russian Math. Surveys
\yr 1993
\vol 48
\issue 6
\pages 158
\crossref{https://doi.org/10.1070/RM1993v048n06ABEH001096}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1993PZ92000007}


Linking options:
  • http://mi.mathnet.ru/eng/umn1347
  • http://mi.mathnet.ru/eng/umn/v48/i6/p141

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. T. Markov, “O PI-koltsakh, imeyuschikh tochnyi modul s razmernostyu Krullya”, Fundament. i prikl. matem., 1:2 (1995), 557–559  mathnet  mathscinet  zmath
    2. V. T. Markov, V. V. Tenzina, “On $\Sigma$-nilpotent ideals of topological PI-rings”, J. Math. Sci., 149:2 (2008), 1113–1118  mathnet  crossref  mathscinet  zmath  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:248
    Full text:84
    References:34
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020