|
This article is cited in 2 scientific papers (total in 2 papers)
In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society
Proof of Dynnikov's conjecture on the location of stability zones in the Novikov problem on planar sections of periodic surfaces
R. De Leo University of Maryland
DOI:
https://doi.org/10.4213/rm1431
Full text:
PDF file (136 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2005, 60:3, 566–567
Bibliographic databases:
MSC: 37C15, 57R70, 58E05 Presented: И. А. Дынников Accepted: 23.03.2005
Citation:
R. De Leo, “Proof of Dynnikov's conjecture on the location of stability zones in the Novikov problem on planar sections of periodic surfaces”, Uspekhi Mat. Nauk, 60:3(363) (2005), 169–170; Russian Math. Surveys, 60:3 (2005), 566–567
Citation in format AMSBIB
\Bibitem{De 05}
\by R.~De Leo
\paper Proof of Dynnikov's conjecture on the location of stability zones in the Novikov problem on planar sections of periodic surfaces
\jour Uspekhi Mat. Nauk
\yr 2005
\vol 60
\issue 3(363)
\pages 169--170
\mathnet{http://mi.mathnet.ru/umn1431}
\crossref{https://doi.org/10.4213/rm1431}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2167814}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..566D}
\elib{https://elibrary.ru/item.asp?id=25787194}
\transl
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 3
\pages 566--567
\crossref{https://doi.org/10.1070/RM2005v060n03ABEH000850}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000232718500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844563070}
Linking options:
http://mi.mathnet.ru/eng/umn1431https://doi.org/10.4213/rm1431 http://mi.mathnet.ru/eng/umn/v60/i3/p169
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
De Leo R., “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Experiment. Math., 15:1 (2006), 109–124
-
DeLeo R., “Geometry of plane sections of the infinite regular skew polyhedron {4,6|4}”, Geom. Dedicata, 138:1 (2009), 51–67
|
Number of views: |
This page: | 291 | Full text: | 139 | References: | 53 | First page: | 2 |
|