Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2005, Volume 60, Issue 4(364), Pages 37–66 (Mi umn1444)  

This article is cited in 5 scientific papers (total in 5 papers)

Computation of characteristic classes of a manifold from a triangulation of it

A. A. Gaifullin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper is devoted to the well-known problem of computing the Stiefel–Whitney classes and the Pontryagin classes of a manifold from a given triangulation of the manifold. In 1940 Whitney found local combinatorial formulae for the Stiefel–Whitney classes. The first combinatorial formula for the first rational Pontryagin class was found by Gabrielov, Gel'fand, and Losik in 1975. Since then, different authors have constructed several different formulae for the rational characteristic classes of a triangulated manifold, but none of these formulae provides an algorithm that computes the characteristic cycle solely from a triangulation of the manifold. In this paper a new local combinatorial formula recently found by the author for the first Pontryagin class is described; it provides the desired algorithm. This result uses a solution of the following problem: construct a function $f$ on the set of isomorphism classes of three-dimensional PL-spheres such that for any combinatorial manifold the chain obtained by taking each simplex of codimension four with coefficient equal to the value of the function on the link of the simplex is a cycle.

DOI: https://doi.org/10.4213/rm1444

Full text: PDF file (426 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2005, 60:4, 615–644

Bibliographic databases:

UDC: 515.164.3
MSC: Primary 57R20, 55U10; Secondary 57Q15, 14C17, 57Q20
Received: 06.06.2005

Citation: A. A. Gaifullin, “Computation of characteristic classes of a manifold from a triangulation of it”, Uspekhi Mat. Nauk, 60:4(364) (2005), 37–66; Russian Math. Surveys, 60:4 (2005), 615–644

Citation in format AMSBIB
\Bibitem{Gai05}
\by A.~A.~Gaifullin
\paper Computation of characteristic classes of a~manifold from a triangulation of~it
\jour Uspekhi Mat. Nauk
\yr 2005
\vol 60
\issue 4(364)
\pages 37--66
\mathnet{http://mi.mathnet.ru/umn1444}
\crossref{https://doi.org/10.4213/rm1444}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2190923}
\zmath{https://zbmath.org/?q=an:1139.57026}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60..615G}
\elib{https://elibrary.ru/item.asp?id=25787206}
\transl
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 4
\pages 615--644
\crossref{https://doi.org/10.1070/RM2005v060n04ABEH003671}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000233910600003}
\elib{https://elibrary.ru/item.asp?id=14005069}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-29244458403}


Linking options:
  • http://mi.mathnet.ru/eng/umn1444
  • https://doi.org/10.4213/rm1444
  • http://mi.mathnet.ru/eng/umn/v60/i4/p37

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Gaifullin, “The construction of combinatorial manifolds with prescribed sets of links of vertices”, Izv. Math., 72:5 (2008), 845–899  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Alexander A. Gaifullin, “Configuration spaces, bistellar moves, and combinatorial formulae for the first Pontryagin class”, Proc. Steklov Inst. Math., 268 (2010), 70–86  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    3. Li Yu, “Localizable invariants of combinatorial manifolds and Euler characteristic”, Arch. Math, 2014  crossref  mathscinet  isi
    4. J. Math. Sci. (N. Y.), 224:2 (2017), 304–327  mathnet  crossref  mathscinet
    5. Govc D., Marzantowicz W., Pavesic P., “How Many Simplices Are Needed to Triangulate a Grassmannian?”, Topol. Methods Nonlinear Anal., 56:2 (2020), 501–518  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:878
    Full text:391
    References:40
    First page:2

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021