RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2005, Volume 60, Issue 6(366), Pages 231–232 (Mi umn1687)  

This article is cited in 22 scientific papers (total in 22 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Derived categories of coherent sheaves and motives

D. O. Orlov

Steklov Mathematical Institute, Russian Academy of Sciences

DOI: https://doi.org/10.4213/rm1687

Full text: PDF file (197 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2005, 60:6, 1242–1244

Bibliographic databases:

ArXiv: math/0512620
Document Type: Article
MSC: Primary 18E30, 14F05; Secondary 14F42
Presented: A. G. Sergeev
Accepted: 01.12.2005

Citation: D. O. Orlov, “Derived categories of coherent sheaves and motives”, Uspekhi Mat. Nauk, 60:6(366) (2005), 231–232; Russian Math. Surveys, 60:6 (2005), 1242–1244

Citation in format AMSBIB
\Bibitem{Orl05}
\by D.~O.~Orlov
\paper Derived categories of coherent sheaves and motives
\jour Uspekhi Mat. Nauk
\yr 2005
\vol 60
\issue 6(366)
\pages 231--232
\mathnet{http://mi.mathnet.ru/umn1687}
\crossref{https://doi.org/10.4213/rm1687}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2225203}
\zmath{https://zbmath.org/?q=an:1146.18302}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2005RuMaS..60.1242O}
\elib{http://elibrary.ru/item.asp?id=25787257}
\transl
\jour Russian Math. Surveys
\yr 2005
\vol 60
\issue 6
\pages 1242--1244
\crossref{https://doi.org/10.1070/RM2005v060n06ABEH004292}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000237188900015}
\elib{http://elibrary.ru/item.asp?id=13474258}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33646412868}


Linking options:
  • http://mi.mathnet.ru/eng/umn1687
  • https://doi.org/10.4213/rm1687
  • http://mi.mathnet.ru/eng/umn/v60/i6/p231

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. S. Dugas, R. Martínez-Villa, “Stable equivalences of graded algebras”, J. Algebra, 320:12 (2008), 4215–4241  crossref  mathscinet  zmath  isi
    2. Lu Di Ming, J. H. Palmieri, Wu Quan Shui, J. J. Zhang, “Koszul equivalences in $A_\infty$-algebras”, New York J. Math., 14 (2008), 325–378  mathscinet  zmath
    3. Proc. Steklov Inst. Math., 264 (2009), 62–69  mathnet  crossref  mathscinet  isi
    4. Arend Bayer, Yu. I. Manin, “Stability conditions, wall-crossing and weighted Gromov–Witten invariants”, Mosc. Math. J., 9:1 (2009), 3–32  mathnet  mathscinet  zmath
    5. V. Bouchard, A. Klemm, M. Mariño, S. Pasquetti, “Topological open strings on orbifolds”, Comm. Math. Phys., 296:3 (2010), 589–623  crossref  mathscinet  zmath  adsnasa  isi  elib
    6. A. Del Padrone, C. Pedrini, “Derived categories of coherent sheaves and motives of K3 surfaces”, Regulators, Contemp. Math., 571, eds. Gil J., DeJeu R., Lewis J., Naranjo J., Raskind W., Xarles X., Amer. Math. Soc., Providence, RI, 2012, 219–232  crossref  mathscinet  zmath  isi
    7. M. Bernardara, M. Bolognesi, “Categorical Representability and Intermediate Jacobians of Fano Threefolds”, Derived categories in algebraic geometry - Tokyo 2011, EMS Ser. Congr. Rep., ed. Kawamata Y., European Math. Soc., 2012, 1–25  mathscinet  zmath  isi
    8. F. Ivorra, J. Sebag, “Géométrie algébrique par morceaux, $K$-équivalence et motifs”, Enseign. Math. (2), 58:3-4 (2012), 375–403  crossref  mathscinet  zmath
    9. Ch. Böhning, H.-Ch. G. von Bothmer, P. Sosna, “On the derived category of the classical Godeaux surface”, Adv. Math., 243 (2013), 203–231  crossref  mathscinet  zmath  isi
    10. M. Bernardara, M. Bolognesi, “Derived categories and rationality of conic bundles”, Compos. Math., 149:11 (2013), 1789–1817  crossref  mathscinet  zmath  isi
    11. A. Ananyevskiy, A. Auel, S. Garibaldi, K. Zainoulline, “Exceptional collections of line bundles on projective homogeneous varieties”, Adv. Math., 236 (2013), 111–130  crossref  mathscinet  zmath  isi
    12. M. Ballard, D. Favero, L. Katzarkov, “A category of kernels for equivariant factorizations, II: further implications”, J. Math. Pures Appl. (9), 102:4 (2014), 702–757  crossref  mathscinet  zmath  isi
    13. Sergey Galkin, Ludmil Katzarkov, Anton Mellit, Evgeny Shinder, “Derived categories of Keum's fake projective planes”, Advances in Mathematics, 278 (2015), 238  crossref  mathscinet  zmath  isi
    14. Honigs K., “Derived Equivalent Surfaces and Abelian Varieties, and Their Zeta Functions”, 143, no. 10, 2015, 4161–4166  crossref  mathscinet  zmath  isi
    15. Halpern-Leistner D., “the Derived Category of a Git Quotient”, 28, no. 3, 2015, 871–912  mathscinet  zmath  isi
    16. Abuaf R., “Homological Units”, Int. Math. Res. Notices, 2017, no. 22, 6943–6960  crossref  mathscinet  isi
    17. Gorchinskiy S., “Integral Chow Motives of Threefolds With K-Motives of Unit Type”, Bull. Korean. Math. Soc., 54:5 (2017), 1827–1849  crossref  mathscinet  isi
    18. Vial Ch., “Exceptional Collections, and the Neron-Severi Lattice For Surfaces”, Adv. Math., 305 (2017), 895–934  crossref  mathscinet  zmath  isi
    19. Honigs K., “Derived Equivalence, Albanese Varieties, and the Zeta Functions of 3-Dimensional Varieties”, Proc. Amer. Math. Soc., 146:3 (2018), 1005–1013  crossref  mathscinet  zmath  isi
    20. Huybrechts D., “Motives of Derived Equivalent K3 Surfaces”, Abh. Math. Semin. Univ. Hamburg, 88:1 (2018), 201–207  crossref  mathscinet  zmath  isi
    21. Kuznetsov A., Shinder E., “Grothendieck Ring of Varieties, D- and l-Equivalence, and Families of Quadrics”, Sel. Math.-New Ser., 24:4 (2018), 3475–3500  crossref  mathscinet  zmath  isi  scopus
    22. Laterveer R., “On the Motive of Intersections of Two Grassmannians in P-9”, Res. Math. Sci., 5 (2018), 29  crossref  mathscinet  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:412
    Full text:165
    References:44
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019