|
This article is cited in 45 scientific papers (total in 45 papers)
Thermodynamic formalism for countable symbolic Markov chains
B. M. Gurevicha, S. V. Savchenkob a M. V. Lomonosov Moscow State University
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
DOI:
https://doi.org/10.4213/rm17
Full text:
PDF file (908 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1998, 53:2, 245–344
Bibliographic databases:
UDC:
519.217
MSC: 37D35, 60J27, 37B10, 37C30 Received: 18.12.1997
Citation:
B. M. Gurevich, S. V. Savchenko, “Thermodynamic formalism for countable symbolic Markov chains”, Uspekhi Mat. Nauk, 53:2(320) (1998), 3–106; Russian Math. Surveys, 53:2 (1998), 245–344
Citation in format AMSBIB
\Bibitem{GurSav98}
\by B.~M.~Gurevich, S.~V.~Savchenko
\paper Thermodynamic formalism for countable symbolic Markov chains
\jour Uspekhi Mat. Nauk
\yr 1998
\vol 53
\issue 2(320)
\pages 3--106
\mathnet{http://mi.mathnet.ru/umn17}
\crossref{https://doi.org/10.4213/rm17}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1639451}
\zmath{https://zbmath.org/?q=an:0926.37009}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1998RuMaS..53..245G}
\transl
\jour Russian Math. Surveys
\yr 1998
\vol 53
\issue 2
\pages 245--344
\crossref{https://doi.org/10.1070/rm1998v053n02ABEH000017}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000075655600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0003228859}
Linking options:
http://mi.mathnet.ru/eng/umn17https://doi.org/10.4213/rm17 http://mi.mathnet.ru/eng/umn/v53/i2/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Ferreira H.H., Lopes A.O., Oliveira E.R., “Explicit Examples in Ergodic Optimization”, Sao Paulo J. Math. Sci.
-
B. M. Gurevich, A. B. Polyakov, “Stably recurrent functions on the path space of a countable graph”, Russian Math. Surveys, 54:6 (1999), 1242–1243
-
S. V. Savchenko, “Spectral properties of an indecomposable non-negative matrix and its principal submatrices of co-order one”, Russian Math. Surveys, 55:1 (2000), 184–185
-
A. M. Vershik, “Dynamic theory of growth in groups: Entropy, boundaries, examples”, Russian Math. Surveys, 55:4 (2000), 667–733
-
Sarig, OM, “On an example with a non-analytic topological pressure”, Comptes Rendus de l Academie Des Sciences Serie i-Mathematique, 330:4 (2000), 311
-
Mauldin R.D., Urbański M., “Gibbs states on the symbolic space over an infinite alphabet”, Israel J. Math., 125:1 (2001), 93–130
-
A. B. Polyakov, “On a measure with maximal entropy for the special flow on a local perturbation of a countable topological Bernoulli scheme”, Sb. Math., 192:7 (2001), 1001–1024
-
Sarig, OM, “Phase transitions for countable Markov shifts”, Communications in Mathematical Physics, 217:3 (2001), 555
-
Fiebig D., Fiebig U.-R., Yuri M., “Pressure and equilibrium states for countable state Markov shifts”, Israel J. Math., 131:1 (2002), 221–257
-
Ruette S., “On the Vere–Jones classification and existence of maximal measures for countable topological Markov chai”, Pacific J Math, 209:2 (2003), 365–380
-
Buzzi J., Sarig O., “Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps”, Ergodic Theory Dynam. Systems, 23:5 (2003), 1383–1400
-
Gómez R., “Positive $K$-theory for finitary isomorphisms of Markov chains”, Ergodic Theory Dynam. Systems, 23:5 (2003), 1485–1504
-
Buzzi J., “Subshifts of quasi-finite type”, Invent. Math., 159:2 (2005), 369–406
-
Yuri, M, “Large deviations for countable to one Markov systems”, Communications in Mathematical Physics, 258:2 (2005), 455
-
Thomsen, K, “On the ergodic theory of synchronized systems”, Ergodic Theory and Dynamical Systems, 26 (2006), 1235
-
Boyle, A, “Almost isomorphism for countable state Markov shifts”, Journal fur Die Reine und Angewandte Mathematik, 592 (2006), 23
-
Buzzi, J, “Large entropy implies existence of a maximal entropy measure for interval maps”, Discrete and Continuous Dynamical Systems, 14:4 (2006), 673
-
Boyle, M, “Good potentials for almost isomorphism of countable state Markov shifts”, Stochastics and Dynamics, 7:1 (2007), 1
-
Buzzi, J, “Maximal entropy measures for piecewise affine surface homeomorphisms”, Ergodic Theory and Dynamical Systems, 29 (2009), 1723
-
Cyr, V, “Spectral Gap and Transience for Ruelle Operators on Countable Markov Shifts”, Communications in Mathematical Physics, 292:3 (2009), 637
-
Gomez, R, “Spanning tree invariants, loop systems and doubly stochastic matrices”, Linear Algebra and Its Applications, 432:2–3 (2010), 556
-
Buzzi J., “Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps”, Annales de l Institut Fourier, 60:3 (2010), 801–852
-
A. I. Bufetov, B. M. Gurevich, “Existence and uniqueness of the measure of maximal entropy for the Teichmüller flow on the moduli space of Abelian differentials”, Sb. Math., 202:7 (2011), 935–970
-
Araujo V., Bufetov A.I., “A large deviations bound for the Teichmüller flow on the moduli space of abelian differentials”, Ergodic Theory Dynam Systems, 31:4 (2011), 1043–1071
-
Godofredo Iommi, Yuki Yayama, “Almost-additive thermodynamic formalism for countable Markov shifts”, Nonlinearity, 25:1 (2012), 165
-
Bruin H., Todd M., “Transience and Thermodynamic Formalism for Infinitely Branched Interval Maps”, J. Lond. Math. Soc.-Second Ser., 86:Part 1 (2012), 171–194
-
B. M. Gurevich, “Convergence of a sequence of equilibrium measures corresponding to finite submatrices of an infinite nonnegative matrix”, Dokl. Math, 87:1 (2013), 95
-
Gurevich B.M., Novokreschenova O.R., “On Asymptotic Properties of Equilibrium Measures Corresponding to Finite Submatrices of Infinite Nonnegative Matrices”, J. Dyn. Control Syst., 19:3 (2013), 327–347
-
Burguet D., “Existence of Measures of Maximal Entropy for C-R Interval Maps”, Proc. Amer. Math. Soc., 142:3 (2014), 957–968
-
Yakov Pesin, “On the work of Sarig on countable Markov chains and thermodynamic formalism”, JMD, 8:1 (2014), 1
-
Araujo V. Galatolo S. Pacifico M.J., “Statistical Properties of Lorenz-Like Flows, Recent Developments and Perspectives”, Int. J. Bifurcation Chaos, 24:10 (2014), 1430028
-
Boyle M. Buzzi J. Gomez R., “Borel Isomorphism of Spr Markov Shifts”, Colloq. Math., 137:1 (2014), 127–136
-
Gurevich B.M., “a Lower Estimate of the Entropy of An Automorphism and Maximum Entropy Conditions For and Invariant Measure of a Suspension Flow Over a Markov Shift”, 91, no. 2, 2015, 186–188
-
Burguet D., “Jumps of Entropy For C-R Interval Maps”, 231, no. 3, 2015, 299–317
-
Ledrappier F., “Erratum: On Omri Sarig's work on the dynamics of surfaces”, J. Mod. Dyn., 9 (2015), 355
-
Bajpai D., Benedetto R.L., Chen R., Kim E., Marschall O., Onul D., Xiao Ya., “Non-archimedean connected Julia sets with branching”, Ergod. Theory Dyn. Syst., 37:1 (2017), 59–78
-
Goncalves D., Sobottka M., Starling Ch., “Two-Sided Shift Spaces Over Infinite Alphabets”, J. Aust. Math. Soc., 103:3 (2017), 357–386
-
Boyle M., Buzzi J., “The Almost Borel Structure of Surface Diffeomorphisms, Markov Shifts and Their Factors”, J. Eur. Math. Soc., 19:9 (2017), 2739–2782
-
Buzzi J., Crovisier S., Fisher T., “The Entropy of C-1-Diffeomorphisms Without a Dominated Splitting”, Trans. Am. Math. Soc., 370:9 (2018), 6685–6734
-
Victoria Melian M., “Targets, Local Weak SIGMA-Gibbs Measures and a Generalized Bowen Dimension Formula”, Nonlinearity, 32:3 (2019), 958–1011
-
Buzzi J., “the Degree of Bowen Factors and Injective Codings of Diffeomorphisms”, J. Mod. Dyn., 16 (2020), 1–36
-
Iommi G., Lacalle C., Yayama Yu., “Hidden Gibbs Measures on Shift Spaces Over Countable Alphabets”, Stoch. Dyn., 20:4 (2020), 2050028
-
Takahasi H., “Uniqueness of Minimizer For Countable Markov Shifts and Equidistribution of Periodic Points”, J. Stat. Phys., 181:6 (2020), 2415–2431
-
Thomsen K., “Kms States, Conformal Measures and Ends in Digraphs”, Adv. Oper. Theory, 5:2 (2020), 489–607
-
Iommi G., Todd M., Velozo A., “Upper Semi-Continuity of Entropy in Non-Compact Settings”, Math. Res. Lett., 27:4 (2020), 1055–1077
|
Number of views: |
This page: | 1369 | Full text: | 355 | References: | 48 | First page: | 1 |
|