Uspekhi Matematicheskikh Nauk
General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 1999, Volume 54, Issue 4(328), Pages 47–74 (Mi umn179)  

This article is cited in 18 scientific papers (total in 18 papers)

Complex analysis and differential topology on complex surfaces

S. Yu. Nemirovski

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: In the paper, the relationship between the theory of holomorphic functions on two-dimensional complex manifolds and their differential topology is described. The basic fact, established by using the Seiberg–Witten invariants, is that the topological characteristics of embedded real surfaces in Stein surfaces satisfy adjunction-type inequalities. A version of Gromov's $h$-principle for totally real embeddings shows that these topological inequalities are sharp. In some cases, these results can be used to describe the envelopes of holomorphy of embedded real surfaces in a given complex surface. Our examples include real surfaces in $\mathbb C^2$ and $\mathbb{CP}^2$ and in products of $\mathbb{CP}^1$ with non-compact Riemann surfaces. A similar technique can be applied to the study of geometric properties of strictly pseudoconvex domains in dimension two.


Full text: PDF file (384 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1999, 54:4, 729–752

Bibliographic databases:

UDC: 515.1
MSC: Primary 32E10, 32D10, 32J20; Secondary 32F15, 53C23, 57N13, 14J35
Received: 07.05.1999

Citation: S. Yu. Nemirovski, “Complex analysis and differential topology on complex surfaces”, Uspekhi Mat. Nauk, 54:4(328) (1999), 47–74; Russian Math. Surveys, 54:4 (1999), 729–752

Citation in format AMSBIB
\by S.~Yu.~Nemirovski
\paper Complex analysis and differential topology on complex surfaces
\jour Uspekhi Mat. Nauk
\yr 1999
\vol 54
\issue 4(328)
\pages 47--74
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 4
\pages 729--752

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. S. Yu. Nemirovski, “Topology of Hypersurface Complements in $\mathbb C^n$ and Rationally Convex Hulls”, Proc. Steklov Inst. Math., 235 (2001), 162–172  mathnet  mathscinet  zmath
    2. Nemirovski S., “Geometric methods in complex analysis”, European Congress of Mathematics, Progress in Mathematics, 202, 2001, 55–64  mathscinet  zmath  isi
    3. Slapar, M, “Real surfaces in elliptic surfaces”, International Journal of Mathematics, 16:4 (2005), 357  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Gompf R.E., “Stein Surfaces as Open Subsets of C-2”, J. Symplectic Geom., 3:4, SI (2005), 565–587  crossref  mathscinet  zmath  isi
    5. Joricke, B, “On the continuity principle”, Asian Journal of Mathematics, 11:1 (2007), 167  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Forstneric, F, “Stein structures and holomorphic mappings”, Mathematische Zeitschrift, 256:3 (2007), 615  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Shcherbina, N, “On the set of complex points of a 2-sphere”, Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze, 8:1 (2009), 73  mathscinet  zmath  isi
    8. Cerne M., Flores M., “Some Remarks on Hartogs' Extension Lemma”, Proceedings of the American Mathematical Society, 138:10 (2010), 3603–3608  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Coltoiu M., Joita C., “The Levi Problem in the Blow-Up”, Osaka J Math, 47:4 (2010), 943–947  mathscinet  zmath  isi
    10. Stefan Nemirovski, “Levi problem and semistable quotients”, Complex Variables and Elliptic Equations, 2011, 1  crossref  mathscinet  adsnasa  isi  scopus  scopus
    11. Prezelj J., Slapar M., “The Generalized Oka-Grauert Principle for 1-Convex Manifolds”, Michigan Math J, 60:3 (2011), 495–506  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Slapar M., “Modeling Complex Points Up to Isotopy”, J. Geom. Anal., 23:4 (2013), 1932–1943  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Gompf R.E., “Smooth Embeddings with Stein Surface Images”, J. Topol., 6:4 (2013), 915–944  crossref  mathscinet  zmath  isi  scopus  scopus
    14. Slapar M., “Cancelling Complex Points in Codimension Two”, Bull. Aust. Math. Soc., 88:1 (2013), 64–69  crossref  mathscinet  zmath  isi  scopus  scopus
    15. Forstneric F., “A Complex Surface Admitting a Strongly Plurisubharmonic Function But No Holomorphic Functions”, J. Geom. Anal., 25:1 (2015), 329–335  crossref  mathscinet  zmath  isi  scopus  scopus
    16. Stefan Nemirovski, Kyler Siegel, “Rationally convex domains and singular Lagrangian surfaces in
      $$\mathbb {C}^2$$
      C 2”, Invent. math, 2015  crossref  mathscinet  isi  scopus  scopus
    17. Forstneric F., “Stein Manifolds and Holomorphic Mappings: the Homotopy Principle in Complex Analysis, 2Nd Edition”, Stein Manifolds and Holomorphic Mappings: the Homotopy Principle in Complex Analysis, 2Nd Edition, Ergebnisse der Mathematik und Iher Grenzgebiete 3 Folge, 56, Springer-Verlag Berlin, 2017, 1–562  crossref  mathscinet  isi
    18. N. G. Kruzhilin, S. Yu. Orevkov, “Plane algebraic curves in fancy balls”, Izv. Math., 85:3 (2021), 407–420  mathnet  crossref  crossref  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:864
    Full text:386
    First page:1

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021