RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1988, Volume 43, Issue 3(261), Pages 125–160 (Mi umn1892)  

This article is cited in 35 scientific papers (total in 35 papers)

Wavefronts and reflection groups

O. P. Shcherbak


Abstract: Typical singularities of wave fronts and ray systems passing by smooth obstacle in $3$-space are described in the article. These singularities turn out to be connected with noncristallographic Coxeter groups $I_2(5)$, $H_3$, $H_4$. Proofs are based on the detail investigation of the discriminants of these groups by their inclusion into cristallographic ones $A_4$, $D_6$, $E_8$ correspondently. Besides, there is given a geometrical description of some singularities of bicaustics in collisionless flows of particles. It is based on inclusions of Coxeter groups $A_1^\mu$, $D_\mu$, $D_4$ into $B_\mu$, $G_\mu$, $F_4$ as normal subgroups. The article contains a wide table matherial on neutral stratification of discriminants of reflection groups.
32 refs.

Full text: PDF file (2154 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1988, 43:3, 149–194

Bibliographic databases:

UDC: 514.8
MSC: 20F55, 51F15
Received: 31.03.1987

Citation: O. P. Shcherbak, “Wavefronts and reflection groups”, Uspekhi Mat. Nauk, 43:3(261) (1988), 125–160; Russian Math. Surveys, 43:3 (1988), 149–194

Citation in format AMSBIB
\Bibitem{Shc88}
\by O.~P.~Shcherbak
\paper Wavefronts and reflection groups
\jour Uspekhi Mat. Nauk
\yr 1988
\vol 43
\issue 3(261)
\pages 125--160
\mathnet{http://mi.mathnet.ru/umn1892}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=955776}
\zmath{https://zbmath.org/?q=an:0675.58007}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1988RuMaS..43..149S}
\transl
\jour Russian Math. Surveys
\yr 1988
\vol 43
\issue 3
\pages 149--194
\crossref{https://doi.org/10.1070/RM1988v043n03ABEH001741}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1988U421100004}


Linking options:
  • http://mi.mathnet.ru/eng/umn1892
  • http://mi.mathnet.ru/eng/umn/v43/i3/p125

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Bogaevsky, “Singularities of projective hypersurfaces”, Funct. Anal. Appl., 24:2 (1990), 97–103  mathnet  crossref  mathscinet  zmath  isi
    2. V. M. Zakalyukin, R. M. Roberts, “On stable singular Lagrangian varieties”, Funct. Anal. Appl., 26:3 (1992), 174–178  mathnet  crossref  mathscinet  zmath  isi
    3. R V Moody, J Patera, J Phys A Math Gen, 26:12 (1993), 2829  crossref  mathscinet  zmath  adsnasa  isi
    4. G. G. Ilyuta, “The A'Campo Theorem on the Discriminant”, Funct. Anal. Appl., 28:2 (1994), 85–91  mathnet  crossref  mathscinet  zmath  isi
    5. C S Lam, J Patera, R T Sharp, J Phys A Math Gen, 29:23 (1996), 7705  crossref  mathscinet  zmath  adsnasa  isi
    6. J. -B. Zuber, “Graphs and reflection groups”, Comm Math Phys, 179:2 (1996), 265  crossref  mathscinet  zmath  adsnasa  isi
    7. O. M. Myasnichenko, “Direct Product of Unfurled Swallowtails in the Problem of Going around an Obstacle”, Funct. Anal. Appl., 30:4 (1996), 230–236  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. V. M. Zakalyukin, O. M. Myasnichenko, “Lagrange Singularities under Symplectic Reduction”, Funct. Anal. Appl., 32:1 (1998), 1–9  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. V. V. Goryunov, “Unitary reflection groups associated with singularities of functions with cyclic symmetry”, Russian Math. Surveys, 54:5 (1999), 873–893  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. Andrew Francis, “The Minimal Basis for the Centre of an Iwahori–Hecke Algebra”, Journal of Algebra, 221:1 (1999), 1  crossref
    11. V. I. Arnold, “Symplectic geometry and topology”, J Math Phys (N Y ), 41:6 (2000), 3307  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Mehmet Koca, Ramazan Koc, Muataz Al-Barwani, J Phys A Math Gen, 34:50 (2001), 11201  crossref  mathscinet  zmath  isi
    13. I. G. Shcherbak, “Noncrystallographic Coxeter Groups and Boundary Singularities”, Funct. Anal. Appl., 35:2 (2001), 158–160  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. Goryunov V.V., “Unitary reflection groups and automorphisms of simple hypersurface singularities”, New Developments in Singularity Theory, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 21, 2001, 305–328  isi
    15. Slodowy P., “Simple singularities and complex reflections”, New Developments in Singularity Theory, Nato Science Series, Series II: Mathematics, Physics and Chemistry, 21, 2001, 329–348  isi
    16. Jirí Patera, Reidun Twarock, J Phys A Math Gen, 35:7 (2002), 1551  crossref  mathscinet  zmath  isi
    17. I.A. Bogaevski, G. Ishikawa, “Lagrange mappings of the first open Whitney umbrella”, Pacific J Math, 203:1 (2002), 115  crossref  mathscinet  zmath  isi  elib
    18. V. V. Goryunov, V. M. Zakalyukin, “On Stability of Projections of Lagrangian Varieties”, Funct. Anal. Appl., 38:4 (2004), 249–255  mathnet  crossref  crossref  mathscinet  zmath  isi
    19. I.A.B. Strachan, “Frobenius manifolds: natural submanifolds and induced bi-Hamiltonian structures”, Differential Geometry and its Applications, 20:1 (2004), 67  crossref
    20. Andreas Fring, Christian Korff, “Affine Toda field theories related to Coxeter groups of noncrystallographic type”, Nuclear Physics B, 729:3 (2005), 361  crossref
    21. Andreas Fring, Christian Korff, “Non-crystallographic reduction of generalized Calogero–Moser models”, J Phys A Math Gen, 39:5 (2006), 1115  crossref  mathscinet  zmath  isi
    22. Feigin, MV, “Logarithmic frobenius structures and coxeter discriminants”, Advances in Mathematics, 212:1 (2007), 143  crossref  mathscinet  zmath  isi  elib
    23. M. Samoylovich, A. Talis, “Steiner systems ( schemes) and special features of the nanostructures symmetry description”, Journal of the European Ceramic Society, 27:2-3 (2007), 993  crossref  elib
    24. Matthew J. Dyer, “Embeddings of root systems I: Root systems over commutative rings”, Journal of Algebra, 321:11 (2009), 3226  crossref
    25. M. I. Samoylovich, A. L. Talis, “A special class of simple 24-vertex polyhedra and tetrahedrally coordinated structures of gas hydrates”, Acta Crystallogr A Found Crystallogr, 66:5 (2010), 616  crossref
    26. Goo Ishikawa, “Singularities of flat extensions from generic surfaces with boundaries”, Differential Geometry and its Applications, 28:3 (2010), 341  crossref
    27. Leonid Polterovich, Inna Scherbak, “V.I. Arnold (1937–2010)”, Jahresber. Dtsch. Math. Ver, 2011  crossref
    28. Pierre-Philippe Dechant, “Clifford Algebra Unveils a Surprising Geometric Significance of Quaternionic Root Systems of Coxeter Groups”, Adv. Appl. Clifford Algebras, 2012  crossref
    29. Pierre-Philippe Dechant, Céline Bœhm, Reidun Twarock, “Affine extensions of non-crystallographic Coxeter groups induced by projection”, J. Math. Phys, 54:9 (2013), 093508  crossref
    30. Pierre-Philippe Dechant, “A Clifford Algebraic Framework for Coxeter Group Theoretic Computations”, Adv. Appl. Clifford Algebras, 2013  crossref
    31. MEHMET KOCA, N.O.ZDES KOCA, RAMAZAN KOC, “AFFINE COXETER GROUP Wa(A4), QUATERNIONS, AND DECAGONAL QUASICRYSTALS”, Int. J. Geom. Methods Mod. Phys, 2013, 1450031  crossref
    32. M Koca, N.O. Koca, A Al-Mukhaini, A Al-Qanabi, “Quasicrystallography fromBnlattices”, J. Phys.: Conf. Ser, 563 (2014), 012016  crossref
    33. N.O. Koca, M Koca, S Al-Shidhani, “h-fold Symmetric quasicrystallography from affine Coxeter groups”, J. Phys.: Conf. Ser, 563 (2014), 012017  crossref
    34. Mehmet Koca, Nazife Ozdes Koca, Ramazan Koc, “Group-theoretical analysis of aperiodic tilings from projections of higher-dimensional latticesBn”, Acta Crystallogr A Found Adv, 71:2 (2015), 175  crossref
    35. Pierre-Philippe Dechant, “Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction”, J. Phys.: Conf. Ser, 597 (2015), 012027  crossref
  •   Russian Mathematical Surveys
    Number of views:
    This page:418
    Full text:169
    References:13
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017