|
This article is cited in 20 scientific papers (total in 21 papers)
Rational varieties: algebra, geometry and arithmetic
Yu. I. Manin, M. A. Tsfasman
Full text:
PDF file (3747 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1986, 41:2, 51–116
Bibliographic databases:
UDC:
512.7
MSC: 14M20, 14H25, 14J26, 14J50, 14Exx, 14M10 Received: 07.03.1985
Citation:
Yu. I. Manin, M. A. Tsfasman, “Rational varieties: algebra, geometry and arithmetic”, Uspekhi Mat. Nauk, 41:2(248) (1986), 43–94; Russian Math. Surveys, 41:2 (1986), 51–116
Citation in format AMSBIB
\Bibitem{ManTsf86}
\by Yu.~I.~Manin, M.~A.~Tsfasman
\paper Rational varieties: algebra, geometry and arithmetic
\jour Uspekhi Mat. Nauk
\yr 1986
\vol 41
\issue 2(248)
\pages 43--94
\mathnet{http://mi.mathnet.ru/umn1998}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=842161}
\zmath{https://zbmath.org/?q=an:0621.14029}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1986RuMaS..41...51M}
\transl
\jour Russian Math. Surveys
\yr 1986
\vol 41
\issue 2
\pages 51--116
\crossref{https://doi.org/10.1070/RM1986v041n02ABEH003242}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1986G669200002}
Linking options:
http://mi.mathnet.ru/eng/umn1998 http://mi.mathnet.ru/eng/umn/v41/i2/p43
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Nikulin, “Del Pezzo surfaces with log-terminal singularities”, Math. USSR-Sb., 66:1 (1990), 231–248
-
V. A. Iskovskikh, “Factorization of birational maps of rational surfaces from the viewpoint of Mori theory”, Russian Math. Surveys, 51:4 (1996), 585–652
-
V. G. Drinfeld, V. A. Iskovskikh, A. I. Kostrikin, A. N. Tyurin, I. R. Shafarevich, “Yurii Ivanovich Manin (on his 60th birthday)”, Russian Math. Surveys, 52:4 (1997), 863–873
-
Degtyarev, A, “Real rational surfaces are quasi-simple”, Journal fur Die Reine und Angewandte Mathematik, 551 (2002), 87
-
E. Ballico, “Geometry of Cubic and Quartic Hypersurfaces over Finite Fields”, Finite Fields and Their Applications, 8:4 (2002), 554
-
V. V. Przyjalkowski, I. A. Cheltsov, K. A. Shramov, “Hyperelliptic and trigonal Fano threefolds”, Izv. Math., 69:2 (2005), 365–421
-
S. Yu. Rybakov, “Zeta functions of conic bundles and Del Pezzo surfaces of degree 4 over finite fields”, Mosc. Math. J., 5:4 (2005), 919–926
-
G. Berhuy, Z. Reichstein, “On the notion of canonical dimension for algebraic groups”, Advances in Mathematics, 198:1 (2005), 128
-
Kharlamov V., “Overview of topological properties of real algebraic surfaces”, Algebraic Geometry and Geometric Modeling, Mathematics and Visualization, 2006, 103–117
-
N. F. Zak, “Quasi-triviality of forms of Segre varieties”, Russian Math. Surveys, 62:5 (2007), 1018–1020
-
N. F. Zak, “The Unirationality of Quartics over Nonclosed Fields Revisited”, Math. Notes, 84:1 (2008), 38–44
-
Ming-chang Kang, Yuri G. Prokhorov, “Rationality of three-dimensional quotients by monomial actions”, Journal of Algebra, 324:9 (2010), 2166
-
Ming-chang Kang, “Retract rational fields”, Journal of Algebra, 2011
-
Cecilia Salgado, “On the rank of the fibers of elliptic K3 surfaces”, Bull Braz Math Soc, New Series, 43:1 (2012), 7
-
Ming-chang Kang, “Bogomolov multipliers and retract rationality for semidirect products”, Journal of Algebra, 397 (2014), 407
-
Akinari Hoshi, Ming-chang Kang, Hidetaka Kitayama, “Quasi-monomial actions and some 4-dimensional rationality problems”, Journal of Algebra, 403 (2014), 363
-
Huah Chu, Akinari Hoshi, Shou-Jen Hu, Ming-chang Kang, “Noether's problem for groups of order 243”, Journal of Algebra, 2015
-
Akinari Hoshi, “Birational classification of fields of invariants for groups of order 128”, Journal of Algebra, 2015
-
Yu. G. Prokhorov, “Ratsionalnye poverkhnosti”, Lekts. kursy NOTs, 24, MIAN, M., 2015, 3–76
-
Auel A. Bernardara M., “Semiorthogonal Decompositions and Birational Geometry of Del Pezzo Surfaces Over Arbitrary Fields”, Proc. London Math. Soc., 117:1 (2018), 1–64
-
S. G. Vlăduţ, D. Yu. Nogin, M. A. Tsfasman, “Varieties over finite fields: quantitative theory”, Russian Math. Surveys, 73:2 (2018), 261–322
|
Number of views: |
This page: | 943 | Full text: | 459 | References: | 54 | First page: | 3 |
|