General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 1988, Volume 43, Issue 5(263), Pages 227–228 (Mi umn2033)  

This article is cited in 47 scientific papers (total in 47 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A family of representations of affine Lie algebras

B. L. Feigin, E. V. Frenkel

Full text: PDF file (189 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1988, 43:5, 221–222

Bibliographic databases:

MSC: 22E46, 22E10, 22E60, 22E45, 14L17
Received: 30.12.1987

Citation: B. L. Feigin, E. V. Frenkel, “A family of representations of affine Lie algebras”, Uspekhi Mat. Nauk, 43:5(263) (1988), 227–228; Russian Math. Surveys, 43:5 (1988), 221–222

Citation in format AMSBIB
\by B.~L.~Feigin, E.~V.~Frenkel
\paper A~family of~representations of~affine Lie algebras
\jour Uspekhi Mat. Nauk
\yr 1988
\vol 43
\issue 5(263)
\pages 227--228
\jour Russian Math. Surveys
\yr 1988
\vol 43
\issue 5
\pages 221--222

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Gerasimov, A. V. Marshakov, A. Yu. Morozov, “Free field representation of parafermions and related coset models”, Theoret. and Math. Phys., 83:2 (1990), 466–473  mathnet  crossref  mathscinet  isi  elib
    2. Boris Feigin, Edward Frenkel, “Bosonic ghost system and the Virasoro algebra”, Physics Letters B, 246:1-2 (1990), 71  crossref
    3. Boris Feigin, Edward Frenkel, “Quantization of the Drinfeld-Sokolov reduction”, Physics Letters B, 246:1-2 (1990), 75  crossref
    4. P Bouwknegt, “Free field realizations of WZNW models. The BRST complex and its quantum group structure”, Physics Letters B, 234:3 (1990), 297  crossref
    5. Katsushi Ito, “Feigin-Fuchs representation of generalized parafermions”, Physics Letters B, 252:1 (1990), 69  crossref
    6. M. Frau, A. Lerda, J.G. McCarthy, S. Sciuto, J. Sidenius, “Free field representation for WZNW models on Riemann surfaces”, Physics Letters B, 245:3-4 (1990), 453  crossref
    7. Peter Bouwknecht, Jim McCarthy, Dennis Nemeschansky, Krzysztof Pilch, “Vertex operators and fusion rules in the free field realizations of WZNW models”, Physics Letters B, 258:1-2 (1991), 127  crossref
    8. Nobuharu Hayashi, “Conformal integrable field theory from WZNW via quantum Hamiltonian reduction”, Nuclear Physics B, 363:2-3 (1991), 681  crossref
    9. Peter Bouwknegt, Jim McCarthy, Krzysztof Pilch, “On the free field resolutions for coset conformal field theories”, Nuclear Physics B, 352:1 (1991), 139  crossref
    10. Edward Frenkel, “Determinant formulas for the free field representations of the Virasoro and Kac-Moody algebras”, Physics Letters B, 286:1-2 (1992), 71  crossref
    11. P Bouwknegt, “? symmetry in conformal field theory”, Physics Reports, 223:4 (1993), 183  crossref
    12. Hidetoshi Awata, Satoru Odake, Jun'ichi Shiraishi, “Free boson realization of”, Comm Math Phys, 162:1 (1994), 61  crossref  mathscinet  zmath  isi
    13. Jean Avan, Antal Jevicki, “Collective Hamiltonians with Kac-Moody algebraic conditions”, Nuclear Physics B, 439:3 (1995), 679  crossref
    14. Jens Lyng Petersen, Jørgen Rasmussen, Ming Yu, “Free field realizations of 2D current algebras, screening currents and primary fields”, Nuclear Physics B, 502:3 (1997), 649  crossref
    15. Jørgen Rasmussen, “Free field realizations of affine current superalgebras, screening currents and primary fields”, Nuclear Physics B, 510:3 (1998), 688  crossref
    16. Oleg Andreev, “Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3”, Nuclear Physics B, 561:3 (1999), 413  crossref
    17. A Mikovic, N Manojlovic, Class Quantum Grav, 17:18 (2000), 3807  crossref  mathscinet  zmath  adsnasa  isi
    18. J Balog, L Feh$eacute$r, L Palla, J Phys A Math Gen, 33:5 (2000), 945  crossref  mathscinet  zmath  adsnasa  isi
    19. Xiang-Mao Ding, Mark D. Gould, Yao-Zhong Zhang, “Twisted sl(3,C)(2)k current algebra: free field representation and screening currents”, Physics Letters B, 523:3-4 (2001), 367  crossref
    21. Szczesny M., “Wakimoto Modules for Twisted Affine Lie Algebras”, Math. Res. Lett., 9:4 (2002), 433–448  isi
    22. Bouwknegt P., “The Knizhnik–Zamolodchikov Equations”, Geometric Analysis and Applications to Quantum Field Theory, Progress in Mathematics, 205, eds. Bouwknegt P., Wu S., Birkhauser Boston, 2002, 21–44  isi
    23. L. Fehér, B.G. Pusztai, “Explicit description of twisted Wakimoto realizations of affine Lie algebras”, Nuclear Physics B, 674:3 (2003), 509  crossref
    24. Frenkel E., “Affine Kac-Moody Algebras, Integrable Systems and their Deformations”, Group 24 : Physical and Mathematical Aspects of Symmetries, Institute of Physics Conference Series, 173, eds. Gazeau J., Kerner R., Antoine J., Metens S., Thibon J., IOP Publishing Ltd, 2003, 21–32  isi
    25. B.L. Feigin, A.M. Semikhatov, “algebras”, Nuclear Physics B, 698:3 (2004), 409  crossref
    26. Naihuan Jing, Kailash Misra, Shaobin Tan, “Bosonic realizations of higher-level toroidal Lie algebras”, Pacific J Math, 219:2 (2005), 285  crossref  mathscinet  zmath  isi
    27. Edward Frenkel, “Wakimoto modules, opers and the center at the critical level”, Advances in Mathematics, 195:2 (2005), 297  crossref
    28. Haisheng Li, Gaywalee Yamskulna, “On certain vertex algebras and their modules associated with vertex algebroids”, Journal of Algebra, 283:1 (2005), 367  crossref
    29. Gorbounov V., Malikov F., Schechtman V., “Twisted Chiral de Rham Algebras on Rho(1)”, Graphs and Patterns in Mathematics and Theoretical Physics, Proceedings, Proceedings of Symposia in Pure Mathematics, 73, eds. Lyubich M., Takhtajan L., Amer Mathematical Soc, 2005, 133–148  isi
    30. Nathan Berkovits, Nikita Nekrasov, “Multiloop superstring amplitudes from non-minimal pure spinor formalism”, J High Energy Phys, 2006:12 (2006), 029  crossref  mathscinet
    31. Shogo Aoyama, “The Berkovits method for conformally invariant non-linear σ-models on”, Physics Letters B, 639:3-4 (2006), 397  crossref
    32. Cox B.L., Futorny V., “Structure of Intermediate Wakimoto Modules”, J. Algebra, 306:2 (2006), 682–702  crossref  isi
    33. Arakawa T., “A New Proof of the Kac-Kazhdan Conjecture”, Int. Math. Res. Notices, 2006, 27091  isi
    34. A. M. Semikhatov, “Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal field models”, Theoret. and Math. Phys., 153:3 (2007), 1597–1642  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    35. Gaywalee Li, Gaywalee Yamskulna, “Twisted modules for vertex algebras associated with vertex algebroids”, Pacific J Math, 229:1 (2007), 199  crossref  mathscinet  zmath  isi
    36. S. E. Klevtsov, “Toward a vertex operator construction of quantum affine algebras”, Theoret. and Math. Phys., 154:2 (2008), 201–208  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    37. M. Gorelik, V. V. Serganova, “On representations of the affine superalgebra $\mathbb q(n)^{(2)}$”, Mosc. Math. J., 8:1 (2008), 91–109  mathnet  mathscinet  zmath
    38. Frenkel E., Gaitsgory D., “Geometric realizations of Wakimoto modules at the critical level”, Duke Math J, 143:1 (2008), 117–203  crossref  isi
    39. Frenkel E., “Ramifications of the geometric Langlands Program”, Representation Theory and Complex Analysis, Lecture Notes in Mathematics, 1931, 2008, 51–135  isi
    40. Feigin, B, “Gaudin models with irregular singularities”, Advances in Mathematics, 223:3 (2010), 873  crossref  mathscinet  zmath  isi  elib
    41. JØRGEN RASMUSSEN, “A NOTE ON KERR/CFT AND FREE FIELDS”, Int. J. Mod. Phys. A, 25:20 (2010), 3965  crossref
    42. Yixin Bao, Cuipo Jiang, Yufeng Pei, “Representations of affine Nappi–Witten algebras”, Journal of Algebra, 2011  crossref
    43. Shogo Aoyama, Katsuyuki Ishii, “Consistently constrained SL(N) WZWN models and classical exchange algebra”, J. High Energ. Phys, 2013:3 (2013)  crossref
    44. H Afshar, M Gary, D Grumiller, R Rashkov, M Riegler, “Semi-classical unitarity in three-dimensional higher spin gravity for non-principal embeddings”, Class. Quantum Grav, 30:10 (2013), 104004  crossref
    45. JONATHAN DUNBAR, NAIHUAN JING, K.C.. MISRA, “REALIZATION OF $\hat{\mathfrak{sl}}_2(\mathbb{C}) AT THE CRITICAL LEVEL”, Commun. Contemp. Math, 2013, 1311200119  crossref
    46. Cuipo Jiang, Song Wang, “Extension of Vertex Operator Algebra”, Algebra Colloq, 21:03 (2014), 361  crossref
    47. David Ridout, Simon Wood, “Relaxed singular vectors, Jack symmetric functions and fractional level <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="" xmlns:xs="" xmlns:xsi="" xmlns="" xmlns:ja="" xmlns:mml="" xmlns:tb="" xmlns:sb="" xmlns:ce="" xmlns:xlink="" xmlns:cals="" xmlns:sa=""><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="fraktur">sl</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover><mml:mrow><mml:mo st”, Nuclear Physics B, 894 (2015), 621  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:773
    Full text:313
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019