|
Эта публикация цитируется в 47 научных статьях (всего в 47 статьях)
В Московском математическом обществе
Сообщения Московского математического общества
Семейство представлений аффинных алгебр Ли
Б. Л. Фейгин, Э. В. Френкель
Полный текст:
PDF файл (189 kB)
Список литературы:
PDF файл
HTML файл
Англоязычная версия:
Russian Mathematical Surveys, 1988, 43:5, 221–222
Реферативные базы данных:
MSC: 22E46, 22E10, 22E60, 22E45, 14L17 Поступила в Правление ММО: 30.12.1987
Образец цитирования:
Б. Л. Фейгин, Э. В. Френкель, “Семейство представлений аффинных алгебр Ли”, УМН, 43:5(263) (1988), 227–228; Russian Math. Surveys, 43:5 (1988), 221–222
Цитирование в формате AMSBIB
\RBibitem{FeiFre88}
\by Б.~Л.~Фейгин, Э.~В.~Френкель
\paper Семейство представлений аффинных алгебр~Ли
\jour УМН
\yr 1988
\vol 43
\issue 5(263)
\pages 227--228
\mathnet{http://mi.mathnet.ru/umn2033}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=971497}
\zmath{https://zbmath.org/?q=an:0668.17015|0657.17013}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1988RuMaS..43..221F}
\transl
\jour Russian Math. Surveys
\yr 1988
\vol 43
\issue 5
\pages 221--222
\crossref{https://doi.org/10.1070/RM1988v043n05ABEH001935}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1988AN96100014}
Образцы ссылок на эту страницу:
http://mi.mathnet.ru/umn2033 http://mi.mathnet.ru/rus/umn/v43/i5/p227
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
Эта публикация цитируется в следующих статьяx:
-
А. А. Герасимов, А. В. Маршаков, А. Ю. Морозов, “Представление свободных полей для парафермионов и других косет-моделей”, ТМФ, 83:2 (1990), 186–196
; A. A. Gerasimov, A. V. Marshakov, A. Yu. Morozov, “Free field representation of parafermions and related coset models”, Theoret. and Math. Phys., 83:2 (1990), 466–473 -
Boris Feigin, Edward Frenkel, “Bosonic ghost system and the Virasoro algebra”, Physics Letters B, 246:1-2 (1990), 71
-
Boris Feigin, Edward Frenkel, “Quantization of the Drinfeld-Sokolov reduction”, Physics Letters B, 246:1-2 (1990), 75
-
P Bouwknegt, “Free field realizations of WZNW models. The BRST complex and its quantum group structure”, Physics Letters B, 234:3 (1990), 297
-
Katsushi Ito, “Feigin-Fuchs representation of generalized parafermions”, Physics Letters B, 252:1 (1990), 69
-
M. Frau, A. Lerda, J.G. McCarthy, S. Sciuto, J. Sidenius, “Free field representation for WZNW models on Riemann surfaces”, Physics Letters B, 245:3-4 (1990), 453
-
Peter Bouwknecht, Jim McCarthy, Dennis Nemeschansky, Krzysztof Pilch, “Vertex operators and fusion rules in the free field realizations of WZNW models”, Physics Letters B, 258:1-2 (1991), 127
-
Nobuharu Hayashi, “Conformal integrable field theory from WZNW via quantum Hamiltonian reduction”, Nuclear Physics B, 363:2-3 (1991), 681
-
Peter Bouwknegt, Jim McCarthy, Krzysztof Pilch, “On the free field resolutions for coset conformal field theories”, Nuclear Physics B, 352:1 (1991), 139
-
Edward Frenkel, “Determinant formulas for the free field representations of the Virasoro and Kac-Moody algebras”, Physics Letters B, 286:1-2 (1992), 71
-
P Bouwknegt, “? symmetry in conformal field theory”, Physics Reports, 223:4 (1993), 183
-
Hidetoshi Awata, Satoru Odake, Jun'ichi Shiraishi, “Free boson realization of”, Comm Math Phys, 162:1 (1994), 61
-
Jean Avan, Antal Jevicki, “Collective Hamiltonians with Kac-Moody algebraic conditions”, Nuclear Physics B, 439:3 (1995), 679
-
Jens Lyng Petersen, Jørgen Rasmussen, Ming Yu, “Free field realizations of 2D current algebras, screening currents and primary fields”, Nuclear Physics B, 502:3 (1997), 649
-
Jørgen Rasmussen, “Free field realizations of affine current superalgebras, screening currents and primary fields”, Nuclear Physics B, 510:3 (1998), 688
-
Oleg Andreev, “Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3”, Nuclear Physics B, 561:3 (1999), 413
-
A Mikovic, N Manojlovic, Class Quantum Grav, 17:18 (2000), 3807
-
J Balog, L Feh$eacute$r, L Palla, J Phys A Math Gen, 33:5 (2000), 945
-
Xiang-Mao Ding, Mark D. Gould, Yao-Zhong Zhang, “Twisted sl(3,C)(2)k current algebra: free field representation and screening currents”, Physics Letters B, 523:3-4 (2001), 367
-
XIANG-MAO DING, MARK D. GOULD, YAO-ZHONG ZHANG, “FREE FIELD AND PARAFERMIONIC REALIZATIONS OF TWISTED CURRENT ALGEBRA”, Int. J. Mod. Phys. B, 16:14n15 (2002), 2153
-
Szczesny M., “Wakimoto Modules for Twisted Affine Lie Algebras”, Math. Res. Lett., 9:4 (2002), 433–448
-
Bouwknegt P., “The Knizhnik–Zamolodchikov Equations”, Geometric Analysis and Applications to Quantum Field Theory, Progress in Mathematics, 205, eds. Bouwknegt P., Wu S., Birkhauser Boston, 2002, 21–44
-
L. Fehér, B.G. Pusztai, “Explicit description of twisted Wakimoto realizations of affine Lie algebras”, Nuclear Physics B, 674:3 (2003), 509
-
Frenkel E., “Affine Kac-Moody Algebras, Integrable Systems and their Deformations”, Group 24 : Physical and Mathematical Aspects of Symmetries, Institute of Physics Conference Series, 173, eds. Gazeau J., Kerner R., Antoine J., Metens S., Thibon J., IOP Publishing Ltd, 2003, 21–32
-
B.L. Feigin, A.M. Semikhatov, “algebras”, Nuclear Physics B, 698:3 (2004), 409
-
Naihuan Jing, Kailash Misra, Shaobin Tan, “Bosonic realizations of higher-level toroidal Lie algebras”, Pacific J Math, 219:2 (2005), 285
-
Edward Frenkel, “Wakimoto modules, opers and the center at the critical level”, Advances in Mathematics, 195:2 (2005), 297
-
Haisheng Li, Gaywalee Yamskulna, “On certain vertex algebras and their modules associated with vertex algebroids”, Journal of Algebra, 283:1 (2005), 367
-
Gorbounov V., Malikov F., Schechtman V., “Twisted Chiral de Rham Algebras on Rho(1)”, Graphs and Patterns in Mathematics and Theoretical Physics, Proceedings, Proceedings of Symposia in Pure Mathematics, 73, eds. Lyubich M., Takhtajan L., Amer Mathematical Soc, 2005, 133–148
-
Nathan Berkovits, Nikita Nekrasov, “Multiloop superstring amplitudes from non-minimal pure spinor formalism”, J High Energy Phys, 2006:12 (2006), 029
-
Shogo Aoyama, “The Berkovits method for conformally invariant non-linear σ-models on”, Physics Letters B, 639:3-4 (2006), 397
-
Cox B.L., Futorny V., “Structure of Intermediate Wakimoto Modules”, J. Algebra, 306:2 (2006), 682–702
-
Arakawa T., “A New Proof of the Kac-Kazhdan Conjecture”, Int. Math. Res. Notices, 2006, 27091
-
А. М. Семихатов, “К построению логарифмических расширений $\widehat{s\ell}(2)_k$-моделей конформной теории поля”, ТМФ, 153:3 (2007), 291–346
; A. M. Semikhatov, “Toward logarithmic extensions of $\widehat{s\ell}(2)_k$ conformal
field models”, Theoret. and Math. Phys., 153:3 (2007), 1597–1642 -
Gaywalee Li, Gaywalee Yamskulna, “Twisted modules for vertex algebras associated with vertex algebroids”, Pacific J Math, 229:1 (2007), 199
-
С. Е. Клевцов, “К вертекс-операторной конструкции квантовых аффинных алгебр”, ТМФ, 154:2 (2008), 240–248
; S. E. Klevtsov, “Toward a vertex operator construction of quantum affine algebras”, Theoret. and Math. Phys., 154:2 (2008), 201–208 -
M. Gorelik, V. V. Serganova, “On representations of the affine superalgebra $\mathbb q(n)^{(2)}$”, Mosc. Math. J., 8:1 (2008), 91–109
-
Frenkel E., Gaitsgory D., “Geometric realizations of Wakimoto modules at the critical level”, Duke Math J, 143:1 (2008), 117–203
-
Frenkel E., “Ramifications of the geometric Langlands Program”, Representation Theory and Complex Analysis, Lecture Notes in Mathematics, 1931, 2008, 51–135
-
Feigin, B, “Gaudin models with irregular singularities”, Advances in Mathematics, 223:3 (2010), 873
-
JØRGEN RASMUSSEN, “A NOTE ON KERR/CFT AND FREE FIELDS”, Int. J. Mod. Phys. A, 25:20 (2010), 3965
-
Yixin Bao, Cuipo Jiang, Yufeng Pei, “Representations of affine Nappi–Witten algebras”, Journal of Algebra, 2011
-
Shogo Aoyama, Katsuyuki Ishii, “Consistently constrained SL(N) WZWN models and classical exchange algebra”, J. High Energ. Phys, 2013:3 (2013)
-
H Afshar, M Gary, D Grumiller, R Rashkov, M Riegler, “Semi-classical unitarity in three-dimensional higher spin gravity for non-principal embeddings”, Class. Quantum Grav, 30:10 (2013), 104004
-
JONATHAN DUNBAR, NAIHUAN JING, K.C.. MISRA, “REALIZATION OF $\hat{\mathfrak{sl}}_2(\mathbb{C}) AT THE CRITICAL LEVEL”, Commun. Contemp. Math, 2013, 1311200119
-
Cuipo Jiang, Song Wang, “Extension of Vertex Operator Algebra”, Algebra Colloq, 21:03 (2014), 361
-
David Ridout, Simon Wood, “Relaxed singular vectors, Jack symmetric functions and fractional level <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mover accent="true"><mml:mrow><mml:mi mathvariant="fraktur">sl</mml:mi></mml:mrow><mml:mrow><mml:mo>ˆ</mml:mo></mml:mrow></mml:mover><mml:mrow><mml:mo st”, Nuclear Physics B, 894 (2015), 621
|
Просмотров: |
Эта страница: | 851 | Полный текст: | 344 | Литература: | 36 | Первая стр.: | 3 |
|