General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 1986, Volume 41, Issue 3(249), Pages 69–111 (Mi umn2081)  

This article is cited in 16 scientific papers (total in 16 papers)

The method of reflection positivity in the mathematical theory of first-order phase transitions

S. B. Shlosman

Full text: PDF file (2394 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1986, 41:3, 83–134

Bibliographic databases:

UDC: 519.219+531.19
MSC: 82B26, 82B20, 82D40
Received: 04.04.1985

Citation: S. B. Shlosman, “The method of reflection positivity in the mathematical theory of first-order phase transitions”, Uspekhi Mat. Nauk, 41:3(249) (1986), 69–111; Russian Math. Surveys, 41:3 (1986), 83–134

Citation in format AMSBIB
\by S.~B.~Shlosman
\paper The~method of reflection positivity in the mathematical theory of first-order phase transitions
\jour Uspekhi Mat. Nauk
\yr 1986
\vol 41
\issue 3(249)
\pages 69--111
\jour Russian Math. Surveys
\yr 1986
\vol 41
\issue 3
\pages 83--134

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. A. Pechersky, S. B. Shlosman, “Low-temperature phase transitions in systems with one ground state”, Theoret. and Math. Phys., 70:3 (1987), 325–330  mathnet  crossref  mathscinet  isi
    2. S. B. Shlosman, “Gauge-invariant specification of gauge fields”, Theoret. and Math. Phys., 77:1 (1988), 1056–1063  mathnet  crossref  mathscinet  isi
    3. L. Chayes, R. Kotecky, S. B. Shlosman, “Aggregation and intermediate phases in dilute spin systems”, Comm Math Phys, 171:1 (1995), 203  crossref  mathscinet  zmath  adsnasa  isi
    4. N. Angelescu, S. Romano, V.A. Zagrebnov, “On long-range order in low-dimensional lattice-gas models of nematic liquid crystals”, Physics Letters A, 200:6 (1995), 433  crossref  elib
    5. V.A. Zagrebnov, “Long-range order in a lattice-gas model of nematic liquid crystals”, Physica A: Statistical Mechanics and its Applications, 232:3-4 (1996), 737  crossref
    6. L CHAYES, J MACHTA, “Graphical representations and cluster algorithms I. Discrete spin systems1”, Physica A: Statistical and Theoretical Physics, 239:4 (1997), 542  crossref
    7. L. Chayes, Leonid P. Pryadko, Kirill Shtengel, “Intersecting loop models on : rigorous results”, Nuclear Physics B, 570:3 (2000), 590  crossref
    8. Aernout C. D. van Enter, “First-Order Transitions for n-Vector Models in Two and More Dimensions: Rigorous Proof”, Phys Rev Letters, 89:28 (2002), 285702  crossref  isi
    9. Aernout C. D. van Enter, Senya B. Shlosman, “Provable First-Order Transitions for Nonlinear Vector and Gauge Models with Continuous Symmetries”, Comm Math Phys, 255:1 (2005), 21  crossref  mathscinet  zmath  isi  elib
    10. Brahim Boussaida, Lahoussine Laanait, “Temperature phase transitions associated with local minima of energy”, Physica A: Statistical Mechanics and its Applications, 358:1 (2005), 93  crossref
    11. Aernout C D van Enter, Silvano Romano, Valentin A Zagrebnov, “First-order transitions for some generalized XY models”, J Phys A Math Gen, 39:26 (2006), L439  crossref  zmath  isi
    12. Senya Shlosman, Yvon Vignaud, “Dobrushin Interfaces via Reflection Positivity”, Comm Math Phys, 276:3 (2007), 827  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Barry Simon, “A Celebration of Jürg and Tom”, J Statist Phys, 2008  crossref  isi
    14. L. Chayes, “Mean Field Analysis of Low–Dimensional Systems”, Comm Math Phys, 2009  crossref  mathscinet  isi
    15. A. C. D. van Enter, G. Iacobelli, S. Taati, “First-Order Transition in Potts Models with “Invisible” States: Rigorous Proofs”, Progress of Theoretical Physics, 126:5 (2011), 983  crossref
    16. Alethea B.T. Barbaro, Lincoln Chayes, Maria R. D’Orsogna, “Territorial developments based on graffiti: A statistical mechanics approach”, Physica A: Statistical Mechanics and its Applications, 2012  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:335
    Full text:104
    First page:3

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019