|
This article is cited in 8 scientific papers (total in 8 papers)
In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society
Robustness of dissipative systems and relative robustness and non-robustness of systems with variable dissipation
M. V. Shamolin M. V. Lomonosov Moscow State University
DOI:
https://doi.org/10.4213/rm217
Full text:
PDF file (204 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1999, 54:5, 1042–1043
Bibliographic databases:
MSC: 58F10 Accepted: 23.08.1999
Citation:
M. V. Shamolin, “Robustness of dissipative systems and relative robustness and non-robustness of systems with variable dissipation”, Uspekhi Mat. Nauk, 54:5(329) (1999), 181–182; Russian Math. Surveys, 54:5 (1999), 1042–1043
Citation in format AMSBIB
\Bibitem{Sha99}
\by M.~V.~Shamolin
\paper Robustness of dissipative systems and relative robustness and non-robustness of systems with variable dissipation
\jour Uspekhi Mat. Nauk
\yr 1999
\vol 54
\issue 5(329)
\pages 181--182
\mathnet{http://mi.mathnet.ru/umn217}
\crossref{https://doi.org/10.4213/rm217}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1741681}
\zmath{https://zbmath.org/?q=an:0968.34039}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54.1042S}
\transl
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 5
\pages 1042--1043
\crossref{https://doi.org/10.1070/rm1999v054n05ABEH000217}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000086693000016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033258914}
Linking options:
http://mi.mathnet.ru/eng/umn217https://doi.org/10.4213/rm217 http://mi.mathnet.ru/eng/umn/v54/i5/p181
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Shamolin, MV, “The case of complete integrability in three-dimensional dynamics of a rigid body interacting with a medium with the inclusion of rotary derivatives of the force moment with respect to the angular velocity”, Doklady Physics, 50:8 (2005), 414
-
M. V. Shamolin, “A case of complete integrability in the dynamics on the tangent bundle of a two-dimensional sphere”, Russian Math. Surveys, 62:5 (2007), 1009–1011
-
M. V. Shamolin, “Dynamical systems with variable dissipation: Approaches, methods, and applications”, J. Math. Sci., 162:6 (2009), 741–908
-
V. V. Trofimov, M. V. Shamolin, “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, J. Math. Sci., 180:4 (2012), 365–530
-
M. V. Shamolin, “Integrable cases in the dynamics of a multi-dimensional rigid body in a nonconservative field in the presence of a tracking force”, J. Math. Sci., 214:6 (2016), 865–891
-
M. V. Shamolin, “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, J. Math. Sci., 230:2 (2018), 185–353
-
M. V. Shamolin, “Integrable systems on the tangent bundle of a multi-dimensional sphere”, J. Math. Sci. (N. Y.), 234:4 (2018), 548–590
-
M. V. Shamolin, “Sistemy s dissipatsiei: otnositelnaya grubost, negrubost razlichnykh stepenei i integriruemost”, Geometriya i mekhanika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 174, VINITI RAN, M., 2020, 70–82
|
Number of views: |
This page: | 268 | Full text: | 111 | References: | 60 | First page: | 1 |
|