RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1999, Volume 54, Issue 6(330), Pages 109–148 (Mi umn231)  

This article is cited in 5 scientific papers (total in 5 papers)

A spectral problem on graphs and $L$-functions

L. O. Chekhov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: This paper is concerned with a scattering process on multiloop infinite $(p+1)$-valent graphs (generalized trees). These graphs are one-dimensional connected simplicial complexes that are quotients of a regular tree with respect to free actions of discrete subgroups of the projective group $PGL(2,\mathbb Q_p)$. As homogeneous spaces, they are identical to $p$-adic multiloop surfaces. The Ihara–Selberg $L$-function is associated with a finite subgraph, namely, the reduced graph containing all loops of the generalized tree. We study a spectral problem and introduce spherical functions as the eigenfunctions of a discrete Laplace operator acting on the corresponding graph. We define the $S$-matrix and prove that it is unitary. We present a proof of the Hashimoto–Bass theorem expressing the $L$-function of any finite (reduced) graph in terms of the determinant of a local operator $\Delta (u)$ acting on this graph and express the determinant of the $S$-matrix as a ratio of $L$-functions, thus obtaining an analogue of the Selberg trace formula. The points of the discrete spectrum are also determined and classified using the $L$-function. We give a number of examples of calculations of $L$-functions.

DOI: https://doi.org/10.4213/rm231

Full text: PDF file (466 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1999, 54:6, 1197–1232

Bibliographic databases:

Document Type: Article
MSC: Primary 11F72, 11M06, 11M41, 20E08, 05C05, 11R42, 11S40; Secondary 58G25, 33C55, 35J05, 81U20
Received: 09.11.1999

Citation: L. O. Chekhov, “A spectral problem on graphs and $L$-functions”, Uspekhi Mat. Nauk, 54:6(330) (1999), 109–148; Russian Math. Surveys, 54:6 (1999), 1197–1232

Citation in format AMSBIB
\Bibitem{Che99}
\by L.~O.~Chekhov
\paper A~spectral problem on graphs and $L$-functions
\jour Uspekhi Mat. Nauk
\yr 1999
\vol 54
\issue 6(330)
\pages 109--148
\mathnet{http://mi.mathnet.ru/umn231}
\crossref{https://doi.org/10.4213/rm231}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1744659}
\zmath{https://zbmath.org/?q=an:0978.11046}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1999RuMaS..54.1197C}
\transl
\jour Russian Math. Surveys
\yr 1999
\vol 54
\issue 6
\pages 1197--1232
\crossref{https://doi.org/10.1070/rm1999v054n06ABEH000231}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000087436000003}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0033261914}


Linking options:
  • http://mi.mathnet.ru/eng/umn231
  • https://doi.org/10.4213/rm231
  • http://mi.mathnet.ru/eng/umn/v54/i6/p109

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L. O. Chekhov, N. V. Puzyrnikova, “Integrable systems on graphs”, Russian Math. Surveys, 55:5 (2000), 992–994  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Phys. Usp., 44:4 (2001), 424–427  mathnet  crossref  crossref  isi
    3. L. O. Chekhov, “Integrable deformations of systems on graphs with loops”, Russian Math. Surveys, 57:3 (2002), 587–588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. Alain Comtet, Jean Desbois, Christophe Texier, “Functionals of Brownian motion, localization and metric graphs”, J Phys A Math Gen, 38:37 (2005), R341  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Christophe Texier, “ζ-regularized spectral determinants on metric graphs”, J Phys A Math Theor, 43:42 (2010), 425203  crossref  mathscinet  zmath  isi  scopus  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:342
    Full text:121
    References:43
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019