Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1984, Volume 39, Issue 4(238), Pages 165–166 (Mi umn2446)  

This article is cited in 7 scientific papers (total in 8 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Uniqueness theorems for solutions of exterior boundary-value problems and an analogue of St. Venant's principle

V. A. Kondrat'ev, O. A. Oleinik


Full text: PDF file (174 kB)

English version:
Russian Mathematical Surveys, 1984, 39:4, 125–126

Bibliographic databases:

MSC: 35A05, 35Dxx
Received: 20.03.1983

Citation: V. A. Kondrat'ev, O. A. Oleinik, “Uniqueness theorems for solutions of exterior boundary-value problems and an analogue of St. Venant's principle”, Uspekhi Mat. Nauk, 39:4(238) (1984), 165–166; Russian Math. Surveys, 39:4 (1984), 125–126

Citation in format AMSBIB
\Bibitem{KonOle84}
\by V.~A.~Kondrat'ev, O.~A.~Oleinik
\paper Uniqueness theorems for solutions of exterior boundary-value problems and an analogue of St.~Venant's principle
\jour Uspekhi Mat. Nauk
\yr 1984
\vol 39
\issue 4(238)
\pages 165--166
\mathnet{http://mi.mathnet.ru/umn2446}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=753782}
\zmath{https://zbmath.org/?q=an:0566.35038}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1984RuMaS..39..125K}
\transl
\jour Russian Math. Surveys
\yr 1984
\vol 39
\issue 4
\pages 125--126
\crossref{https://doi.org/10.1070/RM1984v039n04ABEH004053}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984AMX7600011}


Linking options:
  • http://mi.mathnet.ru/eng/umn2446
  • http://mi.mathnet.ru/eng/umn/v39/i4/p165

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Arnol'd, M. I. Vishik, I. M. Gel'fand, Yu. V. Egorov, A. S. Kalashnikov, A. N. Kolmogorov, S. P. Novikov, S. L. Sobolev, “Ol'ga Arsen'evna Oleinik (on her sixtieth birthday)”, Russian Math. Surveys, 40:5 (1985), 267–287  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. A. Kon'kov, “On the dimension of the solution space of elliptic systems in unbounded domains”, Russian Acad. Sci. Sb. Math., 80:2 (1995), 411–434  mathnet  crossref  mathscinet  zmath  isi
    3. S. A. Nazarov, A. S. Slutskii, “Saint-venant principle for paraboloidal elastic bodies”, Journal of Mathematical Sciences (New York), 98:6 (2000), 717  crossref  mathscinet  elib
    4. H. Matevossian, “The Exterior Dirichlet Problem for the Biharmonic Equation: Solutions with Bounded Dirichlet Integral”, Math. Notes, 70:3 (2001), 363–377  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asymptotic Solutions of Nonrelativistic Equations of Quantum Mechanics in Curved Nanotubes: I. Reduction to Spatially One-Dimensional Equations”, Theoret. and Math. Phys., 141:2 (2004), 1562–1592  mathnet  crossref  mathscinet  adsnasa  isi  elib
    6. L. M. Kozhevnikova, “Anisotropic classes of uniqueness of the solution of the Dirichlet problem for quasi-elliptic equations”, Izv. Math., 70:6 (2006), 1165–1200  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. I. M. Bikkulov, F. Kh. Mukminov, “Klassy edinstvennosti resheniya zadachi Rikke dlya ellipticheskikh uravnenii chetvertogo i shestogo poryadkov”, Ufimsk. matem. zhurn., 2:1 (2010), 35–51  mathnet  zmath  elib
    8. V. V. Grushin, S. Yu. Dobrokhotov, S. A. Sergeev, “Homogenization and dispersion effects in the problem of propagation of waves generated by a localized source”, Proc. Steklov Inst. Math., 281 (2013), 161–178  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:456
    Full text:190
    First page:3

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021