Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1984, Volume 39, Issue 4(238), Pages 173–174 (Mi umn2451)  

This article is cited in 8 scientific papers (total in 8 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The Hamiltonian property of an evolutionary flow on the set of stationary points of its integral

O. I. Mokhov


Full text: PDF file (167 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1984, 39:4, 133–134

Bibliographic databases:

MSC: 70S05, 37J10, 70G10
Received: 29.12.1983

Citation: O. I. Mokhov, “The Hamiltonian property of an evolutionary flow on the set of stationary points of its integral”, Uspekhi Mat. Nauk, 39:4(238) (1984), 173–174; Russian Math. Surveys, 39:4 (1984), 133–134

Citation in format AMSBIB
\Bibitem{Mok84}
\by O.~I.~Mokhov
\paper The Hamiltonian property of an evolutionary flow on the set of stationary points of its integral
\jour Uspekhi Mat. Nauk
\yr 1984
\vol 39
\issue 4(238)
\pages 173--174
\mathnet{http://mi.mathnet.ru/umn2451}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=753786}
\zmath{https://zbmath.org/?q=an:0598.58026|0567.58022}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1984RuMaS..39..133M}
\transl
\jour Russian Math. Surveys
\yr 1984
\vol 39
\issue 4
\pages 133--134
\crossref{https://doi.org/10.1070/RM1984v039n04ABEH004051}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1984AMX7600015}


Linking options:
  • http://mi.mathnet.ru/eng/umn2451
  • http://mi.mathnet.ru/eng/umn/v39/i4/p173

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, “On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral”, Math. USSR-Izv., 31:3 (1988), 657–664  mathnet  crossref  mathscinet  zmath
    2. A. P. Veselov, “Integrable discrete-time systems and difference operators”, Funct. Anal. Appl., 22:2 (1988), 83–93  mathnet  crossref  mathscinet  zmath  isi
    3. Geoff A. Latham, “Solutions of the KP equation associated to rank-three commuting differential operators over a singular elliptic curve”, Physica D: Nonlinear Phenomena, 41:1 (1990), 55  crossref
    4. A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. Geoff A. Latham, “The computational approach to commuting ordinary differential operators of orders six and nine”, J Aust Math Soc Series B Appl Math, 35:4 (1994), 399  crossref  mathscinet  zmath  isi
    6. E.V. Ferapontov, A.P. Fordy, “Separable Hamiltonians and integrable systems of hydrodynamic type”, Journal of Geometry and Physics, 21:2 (1997), 169  crossref
    7. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. O. I. Mokhov, N. A. Strizhova, “Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields”, Russian Math. Surveys, 74:2 (2019), 369–371  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:337
    Full text:148
    References:37

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021