|
This article is cited in 8 scientific papers (total in 8 papers)
Attractors of non-linear Hamiltonian one-dimensional wave equations
A. I. Komech M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
A theory is constructed for attractors of all finite-energy solutions of conservative one-dimensional wave equations on the whole real line. The attractor of a non-degenerate (that is, generic) equation is the set of all stationary solutions. Each finite-energy solution converges as $t\to\pm\infty$ to this attractor in the Frechet topology determined by local energy seminorms. The attraction is caused by energy dissipation at infinity. Our results provide a mathematical model of Bohr transitions (“quantum jumps”) between stationary states in quantum systems.
DOI:
https://doi.org/10.4213/rm249
Full text:
PDF file (541 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 2000, 55:1, 43–92
Bibliographic databases:
UDC:
517.9
MSC: Primary 35L10, 35L70; Secondary 35B40, 35B45, 34C15, 58F05, 34D45, 35Q55 Received: 19.08.1998
Citation:
A. I. Komech, “Attractors of non-linear Hamiltonian one-dimensional wave equations”, Uspekhi Mat. Nauk, 55:1(331) (2000), 45–98; Russian Math. Surveys, 55:1 (2000), 43–92
Citation in format AMSBIB
\Bibitem{Kom00}
\by A.~I.~Komech
\paper Attractors of non-linear Hamiltonian one-dimensional wave equations
\jour Uspekhi Mat. Nauk
\yr 2000
\vol 55
\issue 1(331)
\pages 45--98
\mathnet{http://mi.mathnet.ru/umn249}
\crossref{https://doi.org/10.4213/rm249}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1751818}
\zmath{https://zbmath.org/?q=an:0958.37058}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2000RuMaS..55...43K}
\elib{https://elibrary.ru/item.asp?id=14095414}
\transl
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 1
\pages 43--92
\crossref{https://doi.org/10.1070/rm2000v055n01ABEH000249}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000088114800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0034388747}
Linking options:
http://mi.mathnet.ru/eng/umn249https://doi.org/10.4213/rm249 http://mi.mathnet.ru/eng/umn/v55/i1/p45
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
O. Yu. Dinariev, “On dissipative phenomena of the interaction of Hamiltonian systems”, Siberian Math. J., 44:1 (2003), 61–72
-
Komech A.I., “On attractor of a singular nonlinear U(I)-invariant Klein-Gordon equation”, Progress in Analysis, I–II (2003), 599–611
-
Komech A.I., Mauser N.J., Vinnichenko A.P., “Attraction to solitons in relativistic nonlinear wave equations”, Russ. J. Math. Phys., 11:3 (2004), 289–307
-
Bertini M., Noja D., Posilicano A., “Dynamics and Lax–Phillips scattering for generalized Lamb models”, J. Phys. A, 39:49 (2006), 15173–15195
-
Merzon A.E., Taneco-Hernández M.A., “Scattering in the zero-mass Lamb system”, Phys. Lett. A, 372:27-28 (2008), 4761–4767
-
Komech A.I., Merzon A.E., “Scattering in the nonlinear Lamb system”, Phys. Lett. A, 373:11 (2009), 1005–1010
-
Komech A., “Attractors of Hamilton nonlinear PDEs”, Discret. Contin. Dyn. Syst., 36:11 (2016), 6201–6256
-
A. I. Komech, E. A. Kopylova, “Attractors of nonlinear Hamiltonian partial differential equations”, Russian Math. Surveys, 75:1 (2020), 1–87
|
Number of views: |
This page: | 391 | Full text: | 204 | References: | 36 | First page: | 2 |
|