|
This article is cited in 133 scientific papers (total in 133 papers)
The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems
A. V. Mikhailov, A. B. Shabat, R. I. Yamilov
Full text:
PDF file (3037 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1987, 42:4, 1–63
Bibliographic databases:
UDC:
517.9
MSC: 35L65, 35R30, 35F25 Received: 17.09.1986
Citation:
A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Uspekhi Mat. Nauk, 42:4(256) (1987), 3–53; Russian Math. Surveys, 42:4 (1987), 1–63
Citation in format AMSBIB
\Bibitem{MikShaYam87}
\by A.~V.~Mikhailov, A.~B.~Shabat, R.~I.~Yamilov
\paper The~symmetry approach to the classification of non-linear equations. Complete lists of integrable systems
\jour Uspekhi Mat. Nauk
\yr 1987
\vol 42
\issue 4(256)
\pages 3--53
\mathnet{http://mi.mathnet.ru/umn2578}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=912060}
\zmath{https://zbmath.org/?q=an:0646.35010}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1987RuMaS..42....1M}
\transl
\jour Russian Math. Surveys
\yr 1987
\vol 42
\issue 4
\pages 1--63
\crossref{https://doi.org/10.1070/RM1987v042n04ABEH001441}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1987P639900001}
Linking options:
http://mi.mathnet.ru/eng/umn2578 http://mi.mathnet.ru/eng/umn/v42/i4/p3
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
V. V. Sokolov, “On the symmetries of evolution equations”, Russian Math. Surveys, 43:5 (1988), 165–204
-
P. A. Clarkson, A. S. Fokas, M J. Ablowitz, “Hodograph Transformations of Linearizable Partial Differential Equations”, SIAM J Appl Math, 49:4 (1989), 1188
-
O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655
-
L. A. Kalyakin, “Long wave asymptotics. Integrable equations as asymptotic limits of non-linear systems”, Russian Math. Surveys, 44:1 (1989), 3–42
-
Peter J. Olver, “Symmetries and Differential Equations (G. W. Bluman and S. Kumei)”, SIAM Rev, 32:3 (1990), 517
-
R. I. Yamilov, “Invertible changes of variables generated by Bäcklund transformations”, Theoret. and Math. Phys., 85:2 (1990), 1269–1275
-
A. P. Veselov, “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51
-
S. I. Svinolupov, “Jordan algebras and generalized Korteweg–de Vries equations”, Theoret. and Math. Phys., 87:3 (1991), 611–620
-
Benno Fuchssteiner, “Linear Aspects in the Theory of Solitons and Nonlinear Integrable Equations”, J. Phys. Soc. Jpn, 60:5 (1991), 1473
-
Alexander P. Veselov, “Growth and integrability in the dynamics of mappings”, Comm Math Phys, 145:1 (1992), 181
-
S. I. Svinolupov, V. V. Sokolov, “Factorization of evolution equations”, Russian Math. Surveys, 47:3 (1992), 127–162
-
L Abellanas, C Martinez Ontalba, J Phys A Math Gen, 26:23 (1993), L1229
-
N Asano, H Nakajima, J Phys A Math Gen, 26:9 (1993), 2169
-
A.M. Vinogradov, “From symmetries of partial differential equations towards secondary (“quantized”) calculus”, Journal of Geometry and Physics, 14:2 (1994), 146
-
Jean-Loup Gervais, Mikhail V. Saveliev, “Higher grading generalisations of the Toda systems”, Nuclear Physics B, 453:1-2 (1995), 449
-
I. Z. Golubchik, V. V. Sokolov, “Integrable equations on $\mathbb Z$-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103
-
D Levi, L Vinet, P Winternitz, J Phys A Math Gen, 30:2 (1997), 633
-
V. E. Adler, A. B. Shabat, “Generalized Legendre transformations”, Theoret. and Math. Phys., 112:2 (1997), 935–948
-
A.V. Mikhailov, R.I. Yamilov, “On integrable two-dimensional generalizations of nonlinear Schrödinger type equations”, Physics Letters A, 230:5-6 (1997), 295
-
Carlo Sinestrari, “The Riemann Problem for an Inhomogeneous Conservation Law Without Convexity”, SIAM J. Math. Anal, 28:1 (1997), 109
-
A. B. Borisov, S. A. Zykov, “The dressing chain of discrete symmetries and proliferation of nonlinear equations”, Theor Math Phys, 115:2 (1998), 530
-
P J Olver, V V Sokolov, Inverse Probl, 14:6 (1998), L5
-
V. S. Novikov, “Equations invariant under differential substitutions”, Theor Math Phys, 116:2 (1998), 890
-
Enrique G. Reyes, “Pseudo-spherical Surfaces and Integrability of Evolution Equations”, Journal of Differential Equations, 147:1 (1998), 195
-
V V Sokolov, Thomas Wolf, Inverse Probl, 15:2 (1999), L5
-
Takayuki Tsuchida, Miki Wadati, Inverse Probl, 15:5 (1999), 1363
-
F. T. Hioe, “Solitary Waves for N Coupled Nonlinear Schrödinger Equations”, Phys Rev Letters, 82:6 (1999), 1152
-
F T Hioe, J Phys A Math Gen, 32:12 (1999), 2415
-
V. G. Marikhin, A. B. Shabat, “Integrable lattices”, Theoret. and Math. Phys., 118:2 (1999), 173–182
-
A. V. Yurov, “Conjugate chains of discrete symmetries in $(1+2)$ nonlinear equations”, Theoret. and Math. Phys., 119:3 (1999), 731–738
-
Marikhin V.G., Shabat A.B., “Hamiltonian theory of Backlund transformations”, Optical Solitons: Theoretical Challenges and Industrial Perspectives, Centre de Physique Des Houches, no. 12, 1999, 19–29
-
Mikhail V. Foursov, “Classification of certain integrable coupled potential KdV and modified KdV-type equations”, J Math Phys (N Y ), 41:9 (2000), 6173
-
A. V. Mikhailov, V. V. Sokolov, “Integrable ordinary differential equations on free associative algebras”, Theoret. and Math. Phys., 122:1 (2000), 72–83
-
V. E. Adler, A. B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theoret. and Math. Phys., 125:3 (2000), 1603–1661
-
Vladimir V Sokolov, Thomas Wolf, J Phys A Math Gen, 34:49 (2001), 11139
-
A Sergyeyev, J Phys A Math Gen, 34:23 (2001), 4983
-
Xianguo Geng, Cewen Cao, Nonlinearity, 14:6 (2001), 1433
-
A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Russian Math. Surveys, 56:1 (2001), 61–101
-
V. E. Adler, V. G. Marikhin, A. B. Shabat, “Lagrangian Chains and Canonical Bäcklund Transformations”, Theoret. and Math. Phys., 129:2 (2001), 1448–1465
-
Zhenya Yan, “New explicit travelling wave solutions for two new integrable coupled nonlinear evolution equations”, Physics Letters A, 292:1-2 (2001), 100
-
Mikhail V. Foursov, Peter J. Olver, Enrique G. Reyes, “On formal integrability of evolution equations and local geometry of surfaces”, Differential Geometry and its Applications, 15:2 (2001), 183
-
A V Mikhailov, V S Novikov, “Perturbative symmetry approach”, J Phys A Math Gen, 35:22 (2002), 4775
-
Sergei Igonin, “Conservation laws for multidimensional systems and related linear algebra problems”, J Phys A Math Gen, 35:49 (2002), 10607
-
R. Sahadevan, N. Kannagi, “The coupled modified Korteweg–de Vries equations: Similarity reduction, Lie–Bäcklund symmetries and integrability”, J Math Phys (N Y ), 43:6 (2002), 3133
-
V. S. Shchesnovich, “Perturbation theory for nearly integrable multicomponent nonlinear PDEs”, J Math Phys (N Y ), 43:3 (2002), 1460
-
A. K. Svinin, “Integrable Chains and Hierarchies of Differential Evolution Equations”, Theoret. and Math. Phys., 130:1 (2002), 11–24
-
Mikhail V. Foursov, Marc Moreno Maza, “On Computer-assisted Classification of Coupled Integrable Equations”, Journal of Symbolic Computation, 33:5 (2002), 647
-
Artur Sergyeyev, “On sufficient conditions of locality for hierarchies of symmetries of evolution systems”, Reports on Mathematical Physics, 50:3 (2002), 307
-
Andrew N W Hone, Jing Ping Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Probl, 19:1 (2003), 129
-
R Hernández Heredero, A Shabat, V Sokolov, “A new class of linearizable equations”, J Phys A Math Gen, 36:47 (2003), L605
-
A. V. Yurov, “Discrete symmetry’s chains and links between integrable equations”, J Math Phys (N Y ), 44:3 (2003), 1183
-
Mikhail V. Foursov, “Towards the complete classification of homogeneous two-component integrable equations”, J Math Phys (N Y ), 44:7 (2003), 3088
-
D. D. Holm, A. Hone, “Nonintegrability of a Fifth-Order Equation with Integrable Two-Body Dynamics”, Theoret. and Math. Phys., 137:1 (2003), 1459–1471
-
A. V. Mikhailov, V. S. Novikov, “Classification of integrable Benjamin–Ono-type equations”, Mosc. Math. J., 3:4 (2003), 1293–1305
-
Artur Sergyeyev, Jan A Sanders, “A Remark on Nonlocal Symmetries for the Calogero–Degasperis–Ibragimov–Shabat Equation”, Journal of Nonlinear Mathematical Physics, 10:1 (2003), 78
-
S. Yu. Sakovich, “On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy”, J Math Phys (N Y ), 45:6 (2004), 2338
-
A. G. Meshkov, V. V. Sokolov, “Classification of Integrable Divergent $N$-Component Evolution Systems”, Theoret. and Math. Phys., 139:2 (2004), 609–622
-
Lombardo S., Mikhailov A.V., “Reductions of integrable equations: dihedral group”, Journal of Physics A-Mathematical and General, 37:31 (2004), 7727–7742
-
A Sergyeyev, “Why nonlocal recursion operators produce local symmetries: new results and applications”, J Phys A Math Gen, 38:15 (2005), 3397
-
A Sergyeyev, “A strange recursion operator demystified”, J Phys A Math Gen, 38:15 (2005), L257
-
Hynek Baran, “Can we always distinguish between positive and negative hierarchies?”, J Phys A Math Gen, 38:18 (2005), L301
-
Takayuki Tsuchida, Thomas Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I”, J Phys A Math Gen, 38:35 (2005), 7691
-
Anatoly G. Meshkov, Maxim Ju. Balakhnev, “Integrable Anisotropic Evolution Equations on a Sphere”, SIGMA, 1 (2005), 027, 11 pp.
-
Stephen C Anco, Thomas Wolf, “Some Symmetry Classifications of Hyperbolic Vector Evolution Equations”, Journal of Nonlinear Mathematical Physics, 12:sup1 (2005), 13
-
Olexandr G Rasin, Peter E Hydon, “Conservation laws for NQC-type difference equations”, J Phys A Math Gen, 39:45 (2006), 14055
-
Ravil Yamilov, “Symmetries as integrability criteria for differential difference equations”, J Phys A Math Gen, 39:45 (2006), R541
-
A. Sergyeyev, “Zero-curvature representation for a new fifth-order integrable system”, J. Math. Sci., 151:4 (2008), 3227–3229
-
Anjan Kundu, “Integrable Hierarchy of Higher Nonlinear Schrödinger Type Equations”, SIGMA, 2 (2006), 078, 12 pp.
-
Qi Wang, Yaxuan Yu, “New rational formal solutions for (1+1)-dimensional Toda equation and another Toda equation”, Chaos, Solitons & Fractals, 29:4 (2006), 904
-
Si-Qi Liu, Youjin Zhang, “On quasi-triviality and integrability of a class of scalar evolutionary PDEs”, Journal of Geometry and Physics, 57:1 (2006), 101
-
Alexander V. Mikhailov, Vladimir S. Novikov, Jing Ping Wang, “On Classification of Integrable Nonevolutionary Equations”, Stud appl math, 118:4 (2007), 419
-
R. I. Yamilov, “Integrability conditions for an analogue of the relativistic Toda chain”, Theoret. and Math. Phys., 151:1 (2007), 492–504
-
I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theoret. and Math. Phys., 151:3 (2007), 781–790
-
Vladimir S. Novikov, Jing Ping Wang, “Symmetry Structure of Integrable Nonevolutionary Equations”, Stud appl math, 119:4 (2007), 393
-
Artur Sergyeyev, “Weakly Nonlocal Hamiltonian Structures: Lie Derivative and Compatibility”, SIGMA, 3 (2007), 062, 14 pp.
-
Yaxuan Yu, Qi Wang, Caixia Gao, “Rational formal solutions of differential-difference equations”, Chaos, Solitons & Fractals, 33:5 (2007), 1642
-
Tiecheng Xia, Zhang Jiao, Fucai You, “A new loop algebra and its application to the multi-component S-mKdV hierarchy”, Chaos, Solitons & Fractals, 33:3 (2007), 870
-
V E Adler, “Classification of integrable Volterra-type lattices on the sphere: isotropic case”, J Phys A Math Theor, 41:14 (2008), 145201
-
Decio Levi, Matteo Petrera, Christian Scimiterna, Ravil Yamilov, “On Miura Transformations and Volterra-Type Equations Associated with the Adler–Bobenko–Suris Equations”, SIGMA, 4 (2008), 077, 14 pp.
-
Habibullin, I, “On the classification of Darboux integrable chains”, Journal of Mathematical Physics, 49:10 (2008), 102702
-
Habibullin, I, “On some algebraic properties of semi-discrete hyperbolic type equations”, Turkish Journal of Mathematics, 32:3 (2008), 277
-
Anatoly G.G. Meshkov, Maxim Ju. Balakhnev, “Two-Field Integrable Evolutionary Systems of the Third Order and Their Differential Substitutions”, SIGMA, 4 (2008), 018, 29 pp.
-
JETP Letters, 87:5 (2008), 266–270
-
JETP Letters, 88:3 (2008), 164–166
-
V E Adler, V V Postnikov, “On vector analogs of the modified Volterra lattice”, J. Phys. A: Math. Theor, 41:45 (2008), 455203
-
Boris Dubrovin, Si-Qi Liu, Youjin Zhang, “Frobenius manifolds and central invariants for the Drinfeld–Sokolov bihamiltonian structures”, Advances in Mathematics, 219:3 (2008), 780
-
V. M. Zhuravlev, “The method of generalized Cole–Hopf substitutions and new examples of linearizable nonlinear evolution equations”, Theoret. and Math. Phys., 158:1 (2009), 48–60
-
V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Discrete Nonlinear Hyperbolic Equations. Classification of Integrable Cases”, Funct. Anal. Appl., 43:1 (2009), 3–17
-
Aristophanes Dimakis, Folkert Müller-Hoissen, “BKP and CKP revisited: the odd KP system”, Inverse Probl, 25:4 (2009), 045001
-
D Levi, R I Yamilov, “The generalized symmetry method for discrete equations”, J Phys A Math Theor, 42:45 (2009), 454012
-
A. G. Meshkov, “Vector hyperbolic equations with higher symmetries”, Theoret. and Math. Phys., 161:2 (2009), 1471–1484
-
D. Levi, R. I. Yamilov, “On a nonlinear integrable difference equation on the square”, Ufimsk. matem. zhurn., 1:2 (2009), 101–105
-
VÁCLAV TRYHUK, VERONIKA CHRASTINOVÁ, “AUTOMORPHISMS OF CURVES”, J. Nonlinear Math. Phys, 16:03 (2009), 259
-
Paolo Maria Santini, “The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I”, J Phys A Math Theor, 43:4 (2010), 045209
-
V. M. Zhuravlev, D. A. Zinov’ev, “The application of generalized Cole-Hopf substitutions in compressible-fluid hydrodynamics”, Phys Wave Phen, 18:4 (2010), 245
-
A. G. Meshkov, V. V. Sokolov, “Hyperbolic equations with third-order symmetries”, Theoret. and Math. Phys., 166:1 (2011), 43–57
-
D Levi, R I Yamilov, “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A: Math. Theor, 44:14 (2011), 145207
-
A. V. Mikhailov, J. P. Wang, P. Xenitidis, “Recursion operators, conservation laws, and integrability conditions for difference equations”, Theoret. and Math. Phys., 167:1 (2011), 421–443
-
M. S. Nirova, “On conservation laws in affine Toda systems”, Vladikavk. matem. zhurn., 13:1 (2011), 59–70
-
Joseph Krasil’shchik, Alexander Verbovetsky, “Geometry of jet spaces and integrable systems”, Journal of Geometry and Physics, 61:9 (2011), 1633
-
Andrei V. Zotov, “$1+1$ Gaudin Model”, SIGMA, 7 (2011), 067, 26 pp.
-
Vladimir S. Gerdjikov, Georgi G. Grahovski, Alexander V. Mikhailov, Tihomir I. Valchev, “Polynomial Bundles and Generalised Fourier Transforms for Integrable Equations on A.III-type Symmetric Spaces”, SIGMA, 7 (2011), 096, 48 pp.
-
R. A. Gabiev, A. B. Shabat, “Differential operators commuting in the principal part”, Theoret. and Math. Phys., 171:1 (2012), 435–441
-
M. Gyurses, A. V. Zhiber, I. T. Khabibullin, “Kharakteristicheskie koltsa Li differentsialnykh uravnenii”, Ufimsk. matem. zhurn., 4:1 (2012), 53–62
-
D K Demskoi, C-M Viallet, “Algebraic entropy for semi-discrete equations”, J. Phys. A: Math. Theor, 45:35 (2012), 352001
-
V. E. Adler, V. G. Marikhin, A. B. Shabat, “Quantum tops as examples of commuting differential operators”, Theoret. and Math. Phys., 172:3 (2012), 1187–1205
-
B. I. Suleimanov, ““Kvantovaya” linearizatsiya uravnenii Penleve kak komponenta ikh $L,A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135
-
A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85
-
A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154
-
Garifullin R.N., Yamilov R.I., “Generalized Symmetry Classification of Discrete Equations of a Class Depending on Twelve Parameters”, J. Phys. A-Math. Theor., 45:34 (2012), 345205
-
Jiřina Vodová, “A complete list of conservation laws for non-integrable compacton equations ofK(m,m) type”, Nonlinearity, 26:3 (2013), 757
-
Anatoly Meshkov, Vladimir Sokolov, “Vector Hyperbolic Equations on the Sphere Possessing Integrable Third-Order Symmetries”, Lett Math Phys, 2013
-
I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, Theoret. and Math. Phys., 177:3 (2013), 1655–1679
-
Denis Blackmore, Ya.A.. Prykarpatsky, N.N.. Bogolubov, A.K.. Prykarpatski, “Integrability of and differential–algebraic structures for spatially 1D hydrodynamical systems of Riemann type”, Chaos, Solitons & Fractals, 59 (2014), 59
-
Ziemowit Popowicz, “Two-component coupled KdV equations and its connection with the generalized Harry Dym equations”, J. Math. Phys, 55:1 (2014), 013506
-
Christian Scimiterna, Mike Hay, Decio Levi, “On the integrability of a new lattice equation found by multiple scale analysis”, J. Phys. A: Math. Theor, 47:26 (2014), 265204
-
L. A. Kalyakin, “Phantom asymptotic solutions”, Ufa Math. J., 6:2 (2014), 44–65
-
Decio Levi, Eugenio Ricca, Zora Thomova, Pavel Winternitz, “Lie group analysis of a generalized Krichever-Novikov differential-difference equation”, J. Math. Phys, 55:10 (2014), 103503
-
José del Amor, Ángel Giménez, Pascual Lucas, “A Lie algebra structure on variation vector fields along curves in 2-dimensional space forms”, Journal of Geometry and Physics, 2014
-
V. E. Adler, “Necessary integrability conditions for evolutionary lattice
equations”, Theoret. and Math. Phys., 181:2 (2014), 1367–1382
-
Jiřina Vodová-Jahnová, “On symmetries and conservation laws of the Majda–Biello system”, Nonlinear Analysis: Real World Applications, 22 (2015), 148
-
Alberto De Sole, V.G.. Kac, Refik Turhan, “On integrability of some bi-Hamiltonian two field systems of partial differential equations”, J. Math. Phys, 56:5 (2015), 051503
-
V.E. Adler, “Integrability test for evolutionary lattice equations of higher order”, Journal of Symbolic Computation, 2015
-
Semeon Arthamonov, “Noncommutative Inverse Scattering Method for the Kontsevich System”, Lett Math Phys, 2015
-
V. G. Marikhin, “Action as an invariant of Bäcklund transformations for Lagrangian systems”, Theoret. and Math. Phys., 184:1 (2015), 953–960
-
J. P. Wang, “Representations of $\mathfrak{sl}(2,\mathbb{C})$ in category $\mathcal O$ and master
symmetries”, Theoret. and Math. Phys., 184:2 (2015), 1078–1105
-
V. E. Adler, “Integrable Möbius-invariant evolutionary lattices of second order”, Funct. Anal. Appl., 50:4 (2016), 257–267
-
Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.
-
Ufa Math. J., 9:3 (2017), 158–164
-
D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russian Math. Surveys, 72:6 (2017), 1174–1176
-
S. Ya. Startsev, “Zakony sokhraneniya dlya giperbolicheskikh uravnenii: lokalnyi algoritm poiska proobraza otnositelno polnoi proizvodnoi”, Kompleksnyi analiz. Matematicheskaya fizika, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 162, VINITI RAN, M., 2019, 85–92
-
Perepelkin E.E. Kovalenko A.D. Tarelkin A.A. Polyakova R.V. Sadovnikov B.I. Inozemtseva N.G. Sysoev P.N. Sadovnikova M.B., “Simulation of Magnetic Systems in the Domain With a Corner”, Phys. Part. Nuclei, 50:3 (2019), 341–394
-
V. S. Gerdjikov, A. A. Stefanov, I. D. Iliev, G. P. Boyadjiev, A. O. Smirnov, V. B. Matveev, M. V. Pavlov, “Recursion operators and hierarchies of $mKdV$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$”, Theoret. and Math. Phys., 204:3 (2020), 1110–1129
|
Number of views: |
This page: | 1969 | Full text: | 591 | References: | 65 | First page: | 2 |
|