RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1985, Volume 40, Issue 5(245), Pages 259–260 (Mi umn2775)  

This article is cited in 3 scientific papers (total in 3 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

A theorem of Liouville type on a Riemannian manifold

N. S. Nadirashvili


Full text: PDF file (260 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1985, 40:5, 235–236

Bibliographic databases:

MSC: 58B20, 58D17, 31B05
Received: 23.05.1983

Citation: N. S. Nadirashvili, “A theorem of Liouville type on a Riemannian manifold”, Uspekhi Mat. Nauk, 40:5(245) (1985), 259–260; Russian Math. Surveys, 40:5 (1985), 235–236

Citation in format AMSBIB
\Bibitem{Nad85}
\by N.~S.~Nadirashvili
\paper A theorem of Liouville type on a~Riemannian manifold
\jour Uspekhi Mat. Nauk
\yr 1985
\vol 40
\issue 5(245)
\pages 259--260
\mathnet{http://mi.mathnet.ru/umn2775}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=810821}
\zmath{https://zbmath.org/?q=an:0602.31007}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1985RuMaS..40..235N}
\transl
\jour Russian Math. Surveys
\yr 1985
\vol 40
\issue 5
\pages 235--236
\crossref{https://doi.org/10.1070/RM1985v040n05ABEH003690}


Linking options:
  • http://mi.mathnet.ru/eng/umn2775
  • http://mi.mathnet.ru/eng/umn/v40/i5/p259

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. A. Grigor'yan, “Stochastically complete manifolds and summable harmonic functions”, Math. USSR-Izv., 33:2 (1989), 425–432  mathnet  crossref  mathscinet  zmath
    2. V. I. Yudovich, “Convection of a very viscous and non-heat-conductive fluid”, Sb. Math., 198:1 (2007), 117–146  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. Kyusik Hong, Chanyoung Sung, “An Omori–Yau maximum principle for semi-elliptic operators and Liouville-type theorems”, Differential Geometry and its Applications, 31:4 (2013), 533  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:285
    Full text:111
    References:38
    First page:4

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020