|
This article is cited in 6 scientific papers (total in 6 papers)
Boundary-value problems, the invariance principle, and large deviations
A. A. Borovkov
Full text:
PDF file (3346 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1983, 38:4, 259–290
Bibliographic databases:
UDC:
519.21
MSC: 60F17, 60F10, 60J50, 60B10 Received: 01.03.1983
Citation:
A. A. Borovkov, “Boundary-value problems, the invariance principle, and large deviations”, Uspekhi Mat. Nauk, 38:4(232) (1983), 227–254; Russian Math. Surveys, 38:4 (1983), 259–290
Citation in format AMSBIB
\Bibitem{Bor83}
\by A.~A.~Borovkov
\paper Boundary-value problems, the invariance principle, and large deviations
\jour Uspekhi Mat. Nauk
\yr 1983
\vol 38
\issue 4(232)
\pages 227--254
\mathnet{http://mi.mathnet.ru/umn2955}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=710122}
\zmath{https://zbmath.org/?q=an:0533.60026|0559.60025}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1983RuMaS..38..259B}
\transl
\jour Russian Math. Surveys
\yr 1983
\vol 38
\issue 4
\pages 259--290
\crossref{https://doi.org/10.1070/RM1983v038n04ABEH004212}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983TA39200011}
Linking options:
http://mi.mathnet.ru/eng/umn2955 http://mi.mathnet.ru/eng/umn/v38/i4/p227
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Vidmantas Bentkus, “Theorems of large deviations in the multivariate invariance principle”, Journal of Multivariate Analysis, 41:2 (1992), 297
-
V. I. Piterbarg, V. R. Fatalov, “The Laplace method for probability measures in Banach spaces”, Russian Math. Surveys, 50:6 (1995), 1151–1239
-
A. A. Borovkov, “Kolmogorov and boundary problems of probability theory”, Russian Math. Surveys, 59:1 (2004), 91–102
-
A. A. Borovkov, “Asymptotic analysis for random walks with nonidentically distributed jumps having finite variance”, Siberian Math. J., 46:6 (2005), 1020–1038
-
Collet, P, “Some aspects of the central limit theorem and related topics”, Harmonic Analysis and Rational Approximation: Their Roles in Signals, Control and Dynamical Systems, 327 (2006), 105
-
Mikhail A. Lifshits, Zhan Shi, “Functional large deviations for burgers particle systems”, Comm Pure Appl Math, 60:1 (2007), 41
|
Number of views: |
This page: | 362 | Full text: | 143 | References: | 39 | First page: | 3 |
|