RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1983, Volume 38, Issue 5(233), Pages 3–58 (Mi umn2963)  

This article is cited in 7 scientific papers (total in 7 papers)

A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics

D. Ya. Petrina, V. I. Gerasimenko


Full text: PDF file (2782 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1983, 38:5, 1–61

Bibliographic databases:

UDC: 517.9+531.19
MSC: 82B05, 82B30
Received: 12.12.1982

Citation: D. Ya. Petrina, V. I. Gerasimenko, “A mathematical description of the evolution of the state of infinite systems of classical statistical mechanics”, Uspekhi Mat. Nauk, 38:5(233) (1983), 3–58; Russian Math. Surveys, 38:5 (1983), 1–61

Citation in format AMSBIB
\Bibitem{PetGer83}
\by D.~Ya.~Petrina, V.~I.~Gerasimenko
\paper A~mathematical description of the evolution of the state of infinite systems of classical statistical mechanics
\jour Uspekhi Mat. Nauk
\yr 1983
\vol 38
\issue 5(233)
\pages 3--58
\mathnet{http://mi.mathnet.ru/umn2963}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=718823}
\zmath{https://zbmath.org/?q=an:0552.35069}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1983RuMaS..38....1G}
\transl
\jour Russian Math. Surveys
\yr 1983
\vol 38
\issue 5
\pages 1--61
\crossref{https://doi.org/10.1070/RM1983v038n05ABEH003499}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1983TH35800001}


Linking options:
  • http://mi.mathnet.ru/eng/umn2963
  • http://mi.mathnet.ru/eng/umn/v38/i5/p3

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. I. Gerasimenko, D. Ya. Petrina, “Thermodynamic limit of nonequilibrium states of a three-dimensional system of elastic spheres”, Theoret. and Math. Phys., 64:1 (1985), 734–747  mathnet  crossref  mathscinet  isi
    2. I. D. Chueshov, “Remark on the propagation-of-molecular-chaos theorem”, Theoret. and Math. Phys., 67:2 (1986), 517–521  mathnet  crossref  mathscinet  isi
    3. V. I. Skripnik, “Smoluchowski diffusion in an infinite system at low density: Local time evolution”, Theoret. and Math. Phys., 69:1 (1986), 1047–1056  mathnet  crossref  mathscinet  isi
    4. D. Ya. Petrina, V. I. Gerasimenko, “Mathematical problems of statistical mechanics of a system of elastic balls”, Russian Math. Surveys, 45:3 (1990), 153–211  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    5. Tatiana V. Ryabukha, “On Regularized Solution for BBGKY Hierarchy of One-Dimensional Infinite System”, SIGMA, 2 (2006), 053, 8 pp.  mathnet  crossref  mathscinet  zmath
    6. T. V. Ryabukha, “Functionals for the means of observables for one-dimensional infinite-particle systems”, Theoret. and Math. Phys., 162:3 (2010), 352–365  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. G. N. Gubal', “On the existence of weak local in time solutions in the form of a cumulant expansion for a chain of Bogolyubov's equations of a one-dimensional symmetric particle system”, Journal of Mathematical Sciences, 199:6 (2014), 654–666  mathnet  crossref  mathscinet
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:353
    Full text:144
    References:35
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019