RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1977, Volume 32, Issue 4(196), Pages 251–252 (Mi umn3224)  

This article is cited in 14 scientific papers (total in 14 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Approximation of certain classes of periodic functions of several variables by Fourier sums in the $\widetilde{\mathscr L}_p$ metric

È. M. Galeev


Full text: PDF file (233 kB)
References: PDF file   HTML file

Bibliographic databases:
Received: 09.03.1976

Citation: È. M. Galeev, “Approximation of certain classes of periodic functions of several variables by Fourier sums in the $\widetilde{\mathscr L}_p$ metric”, Uspekhi Mat. Nauk, 32:4(196) (1977), 251–252

Citation in format AMSBIB
\Bibitem{Gal77}
\by \`E.~M.~Galeev
\paper Approximation of certain classes of periodic functions of several variables by Fourier sums in the $\widetilde{\mathscr L}_p$ metric
\jour Uspekhi Mat. Nauk
\yr 1977
\vol 32
\issue 4(196)
\pages 251--252
\mathnet{http://mi.mathnet.ru/umn3224}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=473675}
\zmath{https://zbmath.org/?q=an:0357.42005}


Linking options:
  • http://mi.mathnet.ru/eng/umn3224
  • http://mi.mathnet.ru/eng/umn/v32/i4/p251

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. È. M. Galeev, “Order estimates of derivatives of the multidimensional periodic Dirichlet $\alpha$-kernel in a mixed norm”, Math. USSR-Sb., 45:1 (1983), 31–43  mathnet  crossref  mathscinet  zmath
    2. È. M. Galeev, “Some estimates for the diameters of the intersection of classes of functions”, Russian Math. Surveys, 37:4 (1982), 115–116  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. È. M. Galeev, “Kolmogorov widths in the space $\widetilde L_q$ of the classes $\widetilde W_p^{\overline\alpha}$ and $\widetilde H_p^{\overline\alpha}$ of periodic functions of several variables”, Math. USSR-Izv., 27:2 (1986), 219–237  mathnet  crossref  mathscinet  zmath
    4. Ðinh Dung, “Approximation by trigonometric polynomials of functions of several variables on the torus”, Math. USSR-Sb., 59:1 (1988), 247–267  mathnet  crossref  mathscinet  zmath
    5. È. M. Galeev, “Order estimates of smallest norms, with respect to the choice of $N$ harmonics, of derivatives of the Dirichlet and Favard kernels”, Math. USSR-Sb., 72:2 (1992), 567–578  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    6. A. S. Romanyuk, “Best $M$-term trigonometric approximations of Besov classes of periodic functions of several variables”, Izv. Math., 67:2 (2003), 265–302  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. A. S. Romanyuk, “Bilinear and trigonometric approximations of periodic functions of several variables of Besov classes $B_{p, \theta}^r$”, Izv. Math., 70:2 (2006), 277–306  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. E. M. Skorikov, “Information Kolmogorov width for the intersection of Sobolev classes”, Math. Notes, 80:4 (2006), 602–605  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    9. E. M. Skorikov, “The information Kolmogorov width and some exact inequalities between widths”, Izv. Math., 71:3 (2007), 603–627  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. A. S. Romanyuk, “Best approximations and widths of classes of periodic functions of several variables”, Sb. Math., 199:2 (2008), 253–275  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    11. G. A. Akishev, “O poryadkakh priblizheniya klassov v prostranstvakh Lorentsa”, Sib. elektron. matem. izv., 5 (2008), 51–67  mathnet  mathscinet  elib
    12. A. A. Vasileva, “Kolmogorovskie poperechniki vesovykh klassov Soboleva na kube”, Tr. IMM UrO RAN, 16, no. 4, 2010, 100–116  mathnet  elib
    13. E. M. Galeev, “Poperechniki funktsionalnykh klassov i konechnomernykh mnozhestv”, Vladikavk. matem. zhurn., 13:2 (2011), 3–14  mathnet  elib
    14. A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280 (2013), 91–119  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:286
    Full text:111
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020