General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 2000, Volume 55, Issue 6(336), Pages 3–70 (Mi umn333)  

This article is cited in 48 scientific papers (total in 48 papers)

Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity

P. G. Grinevich

L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: We study the problem of reconstructing the potential of the two-dimensional Schrödinger operator from scattering data measured at fixed energy. This problem, in contrast to the general multidimensional inverse problem, possesses an infinite-dimensional symmetry algebra generated by the Novikov–Veselov hierarchy and hence is “exactly soluble” in some sense; the complexity of the answer is approximately the same as in the one-dimensional problem. We make heavy use of methods developed in modern soliton theory. Since the quantum fixed-energy scattering problem is mathematically equivalent to the acoustic single-frequency scattering problem, we see that the results of the present paper apply in both cases.


Full text: PDF file (853 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2000, 55:6, 1015–1083

Bibliographic databases:

UDC: 517.958+517.984.54
MSC: Primary 81U40; Secondary 35J10, 37K40, 37K15, 35P25, 34L40, 34L20, 35Q53
Received: 31.05.2000

Citation: P. G. Grinevich, “Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity”, Uspekhi Mat. Nauk, 55:6(336) (2000), 3–70; Russian Math. Surveys, 55:6 (2000), 1015–1083

Citation in format AMSBIB
\by P.~G.~Grinevich
\paper Scattering transformation at fixed non-zero energy for the two-dimensional Schr\"odinger operator with potential decaying at infinity
\jour Uspekhi Mat. Nauk
\yr 2000
\vol 55
\issue 6(336)
\pages 3--70
\jour Russian Math. Surveys
\yr 2000
\vol 55
\issue 6
\pages 1015--1083

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. R G Novikov, “On the range characterization for the two-dimensional attenuated x-ray transformation”, Inverse Probl, 18:3 (2002), 677  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    2. Dubrovsky V.G., Formusatik I.B., “New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schrtsdinger equation via $\overline\partial$-dressing method”, Phys. Lett. A, 313:1-2 (2003), 68–76  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Dubrovsky V.G., Formusatik I.B., “New rational solutions of Veselov-Novikov equation and new exact rational potentials of two-dimensional stationary Schrodinger equation via partial derivative-dressing method”, Korus 2005, Proceedings, 2005, 136–138  isi
    4. Michael V Klibanov, Alexandre Timonov, “Numerical studies on the globally convergent convexification algorithm in 2D”, Inverse Probl, 23:1 (2007), 123  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Lassas, M, “Mapping properties of the nonlinear Fourier transform in dimension two”, Communications in Partial Differential Equations, 32:4 (2007), 591  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Isozaki, H, “The partial derivative-theory for inverse problems associated with Schrodinger operators on hyperbolic spaces”, Publications of the Research Institute For Mathematical Sciences, 43:1 (2007), 201  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Shan, H, “A globally accelerated numerical method for optical tomography with continuous wave source”, Journal of Inverse and Ill-Posed Problems, 16:8 (2008), 763  crossref  mathscinet  zmath  isi
    8. Klibanov M.V., Fiddy M.A., Beilina L., Pantong N., Schenk J., “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem”, Inverse Probl., 26:4 (2010), 045003, 30 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. V. G. Dubrovsky, A. V. Topovsky, M. Yu. Basalaev, “Two-dimensional stationary Schrödinger equation via the ∂-dressing method: New exactly solvable potentials, wave functions, and their physical interpretation”, J Math Phys (N Y ), 51:9 (2010), 092106  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    10. Larisa Beilina, Michael V Klibanov, “Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm”, Inverse Probl, 26:12 (2010), 125009  crossref  mathscinet  zmath  isi  scopus  scopus
    11. V. G. Dubrovskii, A. V. Topovsky, M. Yu. Basalaev, “New exact solutions with functional parameters of the Nizhnik–Veselov–Novikov equation with constant asymptotic values at infinity”, Theoret. and Math. Phys., 165:2 (2010), 1470–1489  mathnet  crossref  crossref  isi
    12. Klibanov M.V., Su J., Pantong N., Shan H., Liu H., “A globally convergent numerical method for an inverse elliptic problem of optical tomography”, Applicable Analysis, 89:6 (2010), 861–891  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    13. A V Kazeykina, R G Novikov, “Absence of exponentially localized solitons for the Novikov–Veselov equation at negative energy”, Nonlinearity, 24:6 (2011), 1821  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    14. Kazeykina A.V., Novikov R.G., “A Large Time Asymptotics for Transparent Potentials for the Novikov-Veselov Equation At Positive Energy”, J Nonlinear Math Phys, 18:3 (2011), 377–400  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    15. Novikov R.G., Santacesaria M., “Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderon inverse problem in two dimensions”, Bull Sci Math, 135:5 (2011), 421–434  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    16. Kazeykina A.V., Novikov R.G., “Large time asymptotics for the Grinevich-Zakharov potentials”, Bull Sci Math, 135:4 (2011), 374–382  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Novikov R.G., “Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy”, Phys Lett A, 375:9 (2011), 1233–1235  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    18. A V Kazeykina, “A large-time asymptotics for the solution of the Cauchy problem for the Novikov–Veselov equation at negative energy with non-singular scattering data”, Inverse Problems, 28:5 (2012), 055017  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    19. M. Lassas, J.L. Mueller, S. Siltanen, A. Stahel, “The Novikov–Veselov equation and the inverse scattering method, Part I: Analysis”, Physica D: Nonlinear Phenomena, 2012  crossref  mathscinet  isi  scopus  scopus
    20. Grinevich P.G., Novikov R.G., “Faddeev Eigenfunctions for Point Potentials in Two Dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    21. V. G. Dubrovsky, A. V. Topovsky, “About simple nonlinear and linear superpositions of special exact solutions of Veselov-Novikov equation”, J. Math. Phys, 54:3 (2013), 033509  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    22. Kudryavtsev A.G., “Exactly Solvable Two-Dimensional Stationary Schrodinger Operators Obtained by the Nonlocal Darboux Transformation”, Phys. Lett. A, 377:38 (2013), 2477–2480  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    23. Santacesaria M., “Stability Estimates for an Inverse Problem for the Schrodinger Equation at Negative Energy in Two Dimensions”, Appl. Anal., 92:8 (2013), 1666–1681  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    24. Watanabe M., “Inverse Scattering for the Stationary Wave Equation with a Friction Term in Two Dimensions”, Publ. Res. Inst. Math. Sci., 49:1 (2013), 155–176  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    25. Novikov R.G., Santacesaria M., “Monochromatic Reconstruction Algorithms for Two-Dimensional Multi-Channel Inverse Problems”, Int. Math. Res. Notices, 2013, no. 6, 1205–1229  crossref  mathscinet  zmath  isi  scopus
    26. Novikov R.G., “Approximate Lipschitz Stability for Non-Overdetermined Inverse Scattering at Fixed Energy”, J. Inverse Ill-Posed Probl., 21:6 (2013), 813–823  crossref  mathscinet  zmath  isi  scopus  scopus
    27. V.G. Dubrovsky, A.V. Topovsky, “About linear superpositions of special exact solutions of Nizhnik-Veselov-Novikov equation”, J. Phys.: Conf. Ser, 482 (2014), 012011  crossref  adsnasa  isi  scopus  scopus
    28. A. V. Kazeykina, “Absence of Solitons with Sufficient Algebraic Localization for the Novikov–Veselov Equation at Nonzero Energy”, Funct. Anal. Appl., 48:1 (2014), 24–35  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    29. Jen-Hsu Chang, “Mach-Type Soliton in the Novikov–Veselov Equation”, SIGMA, 10 (2014), 111, 14 pp.  mathnet  crossref
    30. Perry P.A., “Miura Maps and Inverse Scattering For the Novikov-Veselov Equation”, Anal. PDE, 7:2 (2014), 311–343  crossref  mathscinet  zmath  isi  scopus  scopus
    31. R. G. Novikov, “An iterative approach to non-overdetermined inverse scattering at fixed energy”, Sb. Math., 206:1 (2015), 120–134  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    32. R. G. Novikov, “Explicit Formulas and Global Uniqueness for Phaseless Inverse Scattering in Multidimensions”, J Geom Anal, 2015  crossref  mathscinet  scopus  scopus
    33. Jen-Hsu Chang, “The interactions of solitons in the Novikov–Veselov equation”, Applicable Analysis, 2015, 1  crossref  mathscinet  zmath  isi  scopus  scopus
    34. Novikov R.G., “Formulas For Phase Recovering From Phaseless Scattering Data At Fixed Frequency”, 139, no. 8, 2015, 923–936  crossref  mathscinet  zmath  isi  scopus  scopus
    35. Croke R., Mueller J.L., Music M., Perry P., Siltanen S., Stahel A., “the Novikov-Veselov Equation: Theory and Computation”, Nonlinear Wave Equations: Analytic and Computational Techniques, Contemporary Mathematics, 635, eds. Curtis C., Dzhamay A., Hereman W., Prinari B., Amer Mathematical Soc, 2015, 25–70  crossref  mathscinet  zmath  isi
    36. Klein Ch., Saut J.-C., “IST Versus PDE: A Comparative Study”, Hamiltonian Partial Differential Equations and Applications, Fields Institute Communications, eds. Guyenne P., Nicholls D., Sulem C., Springer, 2015, 383–449  crossref  mathscinet  zmath  isi
    37. Kazeykina A., Munoz C., “Dispersive Estimates For Rational Symbols and Local Well-Posedness of the Nonzero Energy Nv Equation”, 270, no. 5, 2016, 1744–1791  crossref  mathscinet  zmath  isi  scopus  scopus
    38. A. G. Kudryavtsev, “Nonlocal Darboux transformation of the two-dimensional stationary Schrödinger equation and its relation to the Moutard transformation”, Theoret. and Math. Phys., 187:1 (2016), 455–462  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    39. de Hoop M.V., Lassas M., Santacesaria M., Siltanen S., Tamminen J.P., “Positive-energy D-bar method for acoustic tomography: a computational study”, Inverse Probl., 32:2 (2016), 025003  crossref  mathscinet  zmath  isi  scopus
    40. Grinevich P.G. Novikov R.G., “Moutard transform approach to generalized analytic functions with contour poles”, Bull. Sci. Math., 140:6 (2016), 638–656  crossref  mathscinet  zmath  isi  elib  scopus
    41. Tamminen J., Tarvainen T., Siltanen S., “The D-Bar Method for Diffuse Optical Tomography: A Computational Study”, Exp. Math., 26:2 (2017), 225–240  crossref  mathscinet  zmath  isi  scopus
    42. P. G. Grinevich, S. P. Novikov, “Singular solitons and spectral meromorphy”, Russian Math. Surveys, 72:6 (2017), 1083–1107  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    43. Lakshtanov E., Vainberg B., “Recovery of l-P-Potential in the Plane”, J. Inverse Ill-Posed Probl., 25:5 (2017), 633–651  crossref  mathscinet  zmath  isi  scopus  scopus
    44. Kazeykina A., Klein Ch., “Numerical Study of Blow-Up and Stability of Line Solitons For the Novikov-Veselov Equation”, Nonlinearity, 30:7 (2017), 2566–2591  crossref  mathscinet  zmath  isi  scopus  scopus
    45. Kazeykina A., Munoz C., “Dispersive Estimates For Rational Symbols and Local Well-Posedness of the Nonzero Energy Nv Equation. II”, J. Differ. Equ., 264:7 (2018), 4822–4888  crossref  mathscinet  zmath  isi  scopus  scopus
    46. Music M., Perry P., “Global Solutions For the Zero-Energy Novikov-Veselov Equation By Inverse Scattering”, Nonlinearity, 31:7 (2018), 3413–3440  crossref  mathscinet  zmath  isi  scopus  scopus
    47. A. D. Agaltsov, R. G. Novikov, “Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials”, Russian Math. Surveys, 74:3 (2019), 373–386  mathnet  crossref  crossref  adsnasa  isi  elib
    48. Agaltsov A.D., Hohage T., Novikov R.G., “An Iterative Approach to Monochromatic Phaseless Inverse Scattering”, Inverse Probl., 35:2 (2019), 024001  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:672
    Full text:220
    First page:2

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020