RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1978, Volume 33, Issue 1(199), Pages 209–210 (Mi umn3357)  

This article is cited in 4 scientific papers (total in 5 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The action of $PLS(2, \mathbb Z)$ in $\mathbb R^1$ is approximable

A. M. Vershik


Full text: PDF file (143 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1978, 33:1, 221–222

Bibliographic databases:

MSC: 28C10, 22F05, 20F05
Received: 26.04.1977

Citation: A. M. Vershik, “The action of $PLS(2, \mathbb Z)$ in $\mathbb R^1$ is approximable”, Uspekhi Mat. Nauk, 33:1(199) (1978), 209–210; Russian Math. Surveys, 33:1 (1978), 221–222

Citation in format AMSBIB
\Bibitem{Ver78}
\by A.~M.~Vershik
\paper The action of $PLS(2, \mathbb Z)$~in~$\mathbb R^1$ is approximable
\jour Uspekhi Mat. Nauk
\yr 1978
\vol 33
\issue 1(199)
\pages 209--210
\mathnet{http://mi.mathnet.ru/umn3357}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=494301}
\zmath{https://zbmath.org/?q=an:0399.28008|0391.28008}
\transl
\jour Russian Math. Surveys
\yr 1978
\vol 33
\issue 1
\pages 221--222
\crossref{https://doi.org/10.1070/RM1978v033n01ABEH002255}


Linking options:
  • http://mi.mathnet.ru/eng/umn3357
  • http://mi.mathnet.ru/eng/umn/v33/i1/p209

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. M. Stepin, “Approximability of groups and group actions”, Russian Math. Surveys, 38:6 (1983), 131–132  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. V. I. Arnol'd, M. Sh. Birman, I. M. Gel'fand, I. A. Ibragimov, S. V. Kerov, A. A. Kirillov, O. A. Ladyzhenskaya, G. A. Leonov, A. A. Lodkin, S. P. Novikov, Ya. G. Sinai, M. Z. Solomyak, L. D. Faddeev, “Anatolii Moiseevich Vershik (on his sixtieth birthday)”, Russian Math. Surveys, 49:3 (1994), 207–221  mathnet  crossref  mathscinet  adsnasa  isi
    3. Joachim Cuntz, Anatoly Vershik, “C*-Algebras Associated with Endomorphisms and Polymorphisms of Compact Abelian Groups”, Commun. Math. Phys, 2012  crossref
    4. I. V. Orlov, S. I. Smirnova, “Invertibility of multivalued sublinear operators”, Eurasian Math. J., 6:4 (2015), 44–58  mathnet
    5. I. V. Orlov, “Inverse and Implicit Function Theorems in the Class of Subsmooth Maps”, Math. Notes, 99:4 (2016), 619–622  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:297
    Full text:77
    References:38
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019