|
This article is cited in 10 scientific papers (total in 10 papers)
In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society
Automodel solutions of wave equations with time lag
A. A. Lokshin, V. E. Rok
Full text:
PDF file (129 kB)
References:
PDF file
HTML file
English version:
Russian Mathematical Surveys, 1978, 33:6, 143–244
Bibliographic databases:
MSC: 35L05, 45E05, 45E10, 44A10, 74Dxx Received: 16.11.1977
Citation:
A. A. Lokshin, V. E. Rok, “Automodel solutions of wave equations with time lag”, Uspekhi Mat. Nauk, 33:6(204) (1978), 221–222; Russian Math. Surveys, 33:6 (1978), 143–244
Citation in format AMSBIB
\Bibitem{LokRok78}
\by A.~A.~Lokshin, V.~E.~Rok
\paper Automodel solutions of~wave equations with time lag
\jour Uspekhi Mat. Nauk
\yr 1978
\vol 33
\issue 6(204)
\pages 221--222
\mathnet{http://mi.mathnet.ru/umn3606}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=526028}
\zmath{https://zbmath.org/?q=an:0398.35058}
\transl
\jour Russian Math. Surveys
\yr 1978
\vol 33
\issue 6
\pages 143--244
\crossref{https://doi.org/10.1070/RM1978v033n06ABEH003870}
Linking options:
http://mi.mathnet.ru/eng/umn3606 http://mi.mathnet.ru/eng/umn/v33/i6/p221
Citing articles on Google Scholar:
Russian citations,
English citations
Related articles on Google Scholar:
Russian articles,
English articles
This publication is cited in the following articles:
-
Andrzej Hanyga, M Seredynska, “Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media-I. Forward problems”, Geophys J Int, 137:2 (1999), 319
-
Andrzej Hanyga, Małgorzata Seredyńska, “Asymptotic ray theory in poro- and viscoelastic media”, Wave Motion, 30:2 (1999), 175
-
M. Seredyńska, A. Hanyga, “Nonlinear Hamiltonian equations with fractional damping”, J Math Phys (N Y ), 41:4 (2000), 2135
-
Andrzej Hanyga, Vladimir E. Rok, “Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation”, J Acoust Soc Amer, 107:6 (2000), 2965
-
A. Hanyga, “Wave propagation in media with singular memory”, Mathematical and Computer Modelling, 34:12-13 (2001), 1399
-
A. HANYGA, M. SEREDYŃSKA, “UNIFORMLY ASYMPTOTIC SOLUTIONS FOR PSEUDODIFFERENTIAL EQUATIONS WITH SINGULAR INTEGRAL OPERATORS”, J. Comp. Acous, 09:02 (2001), 495
-
A. Hanyga, M. Seredynska, “Power-law attenuation in acoustic and isotropic anelastic media”, Geophys J Int, 155:3 (2003), 830
-
A Hanyga, “Anisotropic viscoelastic models with singular memory”, Journal of Applied Geophysics, 54:3-4 (2003), 411
-
A. Ribodetti, A. Hanyga, “Some effects of the memory kernel singularity on wave propagation and inversion in viscoelastic media - II. Inversion”, Geophys J Int, 158:2 (2004), 426
-
Andrzej Hanyga, Małgorzata Seredyńska, “Relations Between Relaxation Modulus and Creep Compliance in Anisotropic Linear Viscoelasticity”, J Elast, 88:1 (2007), 41
|
Number of views: |
This page: | 235 | Full text: | 104 | References: | 25 | First page: | 1 |
|