RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1978, Volume 33, Issue 6(204), Pages 221–222 (Mi umn3606)  

This article is cited in 10 scientific papers (total in 10 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Automodel solutions of wave equations with time lag

A. A. Lokshin, V. E. Rok


Full text: PDF file (129 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1978, 33:6, 143–244

Bibliographic databases:

MSC: 35L05, 45E05, 45E10, 44A10, 74Dxx
Received: 16.11.1977

Citation: A. A. Lokshin, V. E. Rok, “Automodel solutions of wave equations with time lag”, Uspekhi Mat. Nauk, 33:6(204) (1978), 221–222; Russian Math. Surveys, 33:6 (1978), 143–244

Citation in format AMSBIB
\Bibitem{LokRok78}
\by A.~A.~Lokshin, V.~E.~Rok
\paper Automodel solutions of~wave equations with time lag
\jour Uspekhi Mat. Nauk
\yr 1978
\vol 33
\issue 6(204)
\pages 221--222
\mathnet{http://mi.mathnet.ru/umn3606}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=526028}
\zmath{https://zbmath.org/?q=an:0398.35058}
\transl
\jour Russian Math. Surveys
\yr 1978
\vol 33
\issue 6
\pages 143--244
\crossref{https://doi.org/10.1070/RM1978v033n06ABEH003870}


Linking options:
  • http://mi.mathnet.ru/eng/umn3606
  • http://mi.mathnet.ru/eng/umn/v33/i6/p221

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Andrzej Hanyga, M Seredynska, “Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media-I. Forward problems”, Geophys J Int, 137:2 (1999), 319  crossref  isi  elib
    2. Andrzej Hanyga, Małgorzata Seredyńska, “Asymptotic ray theory in poro- and viscoelastic media”, Wave Motion, 30:2 (1999), 175  crossref
    3. M. Seredyńska, A. Hanyga, “Nonlinear Hamiltonian equations with fractional damping”, J Math Phys (N Y ), 41:4 (2000), 2135  crossref  mathscinet  zmath  adsnasa  isi
    4. Andrzej Hanyga, Vladimir E. Rok, “Wave propagation in micro-heterogeneous porous media: A model based on an integro-differential wave equation”, J Acoust Soc Amer, 107:6 (2000), 2965  crossref  isi  elib
    5. A. Hanyga, “Wave propagation in media with singular memory”, Mathematical and Computer Modelling, 34:12-13 (2001), 1399  crossref
    6. A. HANYGA, M. SEREDYŃSKA, “UNIFORMLY ASYMPTOTIC SOLUTIONS FOR PSEUDODIFFERENTIAL EQUATIONS WITH SINGULAR INTEGRAL OPERATORS”, J. Comp. Acous, 09:02 (2001), 495  crossref
    7. A. Hanyga, M. Seredynska, “Power-law attenuation in acoustic and isotropic anelastic media”, Geophys J Int, 155:3 (2003), 830  crossref  adsnasa  isi  elib
    8. A Hanyga, “Anisotropic viscoelastic models with singular memory”, Journal of Applied Geophysics, 54:3-4 (2003), 411  crossref
    9. A. Ribodetti, A. Hanyga, “Some effects of the memory kernel singularity on wave propagation and inversion in viscoelastic media - II. Inversion”, Geophys J Int, 158:2 (2004), 426  crossref  adsnasa  isi
    10. Andrzej Hanyga, Małgorzata Seredyńska, “Relations Between Relaxation Modulus and Creep Compliance in Anisotropic Linear Viscoelasticity”, J Elast, 88:1 (2007), 41  crossref  mathscinet  zmath  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:235
    Full text:104
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021