RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1976, Volume 31, Issue 4(190), Pages 87–149 (Mi umn3762)  

This article is cited in 6 scientific papers (total in 6 papers)

Foundations of algebraic $K$-theory

L. N. Vaserstein


Abstract: The fundamental concepts of (general) algebraic $K$-theory are expounded and it is proved that the higher $K$-functors of Volodin, Quillen, Swan and Gersten are the same.

Full text: PDF file (7729 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1976, 31:4, 89–156

Bibliographic databases:

MSC: 19D10, 16E30, 18A25, 18G30, 13F55
Received: 26.02.1975

Citation: L. N. Vaserstein, “Foundations of algebraic $K$-theory”, Uspekhi Mat. Nauk, 31:4(190) (1976), 87–149; Russian Math. Surveys, 31:4 (1976), 89–156

Citation in format AMSBIB
\Bibitem{Vas76}
\by L.~N.~Vaserstein
\paper Foundations of~algebraic $K$-theory
\jour Uspekhi Mat. Nauk
\yr 1976
\vol 31
\issue 4(190)
\pages 87--149
\mathnet{http://mi.mathnet.ru/umn3762}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=427426}
\zmath{https://zbmath.org/?q=an:0356.18015|0359.18015}
\transl
\jour Russian Math. Surveys
\yr 1976
\vol 31
\issue 4
\pages 89--156
\crossref{https://doi.org/10.1070/RM1976v031n04ABEH001560}


Linking options:
  • http://mi.mathnet.ru/eng/umn3762
  • http://mi.mathnet.ru/eng/umn/v31/i4/p87

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. L.N. Vaserstein, B.A. Magurnt, “Prestabilization for K1 of Banach algebras”, Linear Algebra and its Applications, 95 (1987), 69  crossref
    2. Nigel Higson, “Algebraic K-theory of stable -algebras”, Advances in Mathematics, 67:1 (1988), 1  crossref
    3. V. M. Dergachev, “Algebraic $K$-groups as homotopy groups of a simplicial analogue of Grassmann manifolds”, Russian Math. Surveys, 45:5 (1990), 227–228  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    4. Thomas Fischer, “K-theory of function rings”, Journal of Pure and Applied Algebra, 69:1 (1990), 33  crossref
    5. Kevin P. Knudson, “Congruence Subgroups and Twisted Cohomology ofSLn(F[t])”, Journal of Algebra, 207:2 (1998), 695  crossref
    6. Th. Yu. Popelensky, M. V. Prikhodko, “Bruns–Gubeladze $K$-groups for quadrangular pyramid”, Journal of Mathematical Sciences, 214:5 (2016), 718–727  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:429
    Full text:229
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020