General information
Latest issue
Impact factor
License agreement
Submit a manuscript

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Uspekhi Mat. Nauk:

Personal entry:
Save password
Forgotten password?

Uspekhi Mat. Nauk, 2001, Volume 56, Issue 2(338), Pages 87–166 (Mi umn383)  

This article is cited in 48 scientific papers (total in 48 papers)

Orlik–Solomon algebras in algebra and topology

S. A. Yuzvinskii

University of Oregon

Abstract: This is a survey of Orlik–Solomon algebras of hyperplane arrangements. These algebras first appeared in theorems due to Arnol'd, Brieskorn, and Orlik and Solomon as the cohomology algebras of the complements of complex hyperplane arrangements. Numerous applications of these algebras have subsequently been found. This survey is confined to studying Orlik–Solomon algebras per se and some of their applications to topology and combinatorics. Most of the results are taken from recent papers and preprints, although for the reader's convenience we also include relevant definitions and basic facts from the book Arrangements of hyperplanes by Orlik and Terao. For some of these facts new and more straightforward or shorter proofs are given.


Full text: PDF file (820 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2001, 56:2, 293–364

Bibliographic databases:

UDC: 512.66
MSC: Primary 52C35, 05B35, 16S37; Secondary 14F40, 32S22, 16E05, 13P10
Received: 25.09.2000

Citation: S. A. Yuzvinskii, “Orlik–Solomon algebras in algebra and topology”, Uspekhi Mat. Nauk, 56:2(338) (2001), 87–166; Russian Math. Surveys, 56:2 (2001), 293–364

Citation in format AMSBIB
\by S.~A.~Yuzvinskii
\paper Orlik--Solomon algebras in algebra and topology
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 2(338)
\pages 87--166
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 2
\pages 293--364

Linking options:

    SHARE: FaceBook Twitter Livejournal

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. A. Vassiliev, “Topology of plane arrangements and their complements”, Russian Math. Surveys, 56:2 (2001), 365–401  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Forge D., “Bases in Orlik-Solomon type algebras”, European J. Combin., 23:5 (2002), 567–572  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    3. Schenck H.K., Suciu A.I., “Lower central series and free resolutions of hyperplane arrangements”, Trans. Amer. Math. Soc., 354:9 (2002), 3409–3433  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Cohen D.C., “Triples of arrangements and local systems”, Proc. Amer. Math. Soc., 130:10 (2002), 3025–3031  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Denham G., Yuzvinsky S., “Annihilators of Orlik-Solomon relations”, Adv. in Appl. Math., 28:2 (2002), 231–249  crossref  mathscinet  zmath  isi  scopus
    6. Cordovil R., Forge D., “A note on Tutte polynomials and Orlik-Solomon algebras”, European J. Combin., 24:8 (2003), 1081–1087  crossref  mathscinet  zmath  isi  scopus
    7. Papadima S., Suciu A.I., “Homotopy Lie algebras, lower central series and the Koszul property”, Geom. Topol., 8 (2004), 1079–1125  crossref  mathscinet  zmath  isi  scopus
    8. Yuzvinsky S., “Realization of finite Abelian groups by nets in $\mathbb P^2$”, Compos. Math., 140:6 (2004), 1614–1624  crossref  mathscinet  zmath  isi  scopus  scopus
    9. J. Math. Sci. (N. Y.), 140:3 (2007), 472–479  mathnet  crossref  mathscinet  zmath  elib
    10. Kawahara Y., “Vanishing and bases for cohomology of partially trivial local systems on hyperplane arrangements”, Proc. Amer. Math. Soc., 133:7 (2005), 1907–1915  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Bartholdi L., Enriquez B., Etingof P., Rains E., “Groups and Lie algebras corresponding to the Yang–Baxter equations”, J. Algebra, 305:2 (2006), 742–764  crossref  mathscinet  zmath  isi  scopus
    12. Cohen D.C., Suciu A.I., “Boundary manifolds of projective hypersurfaces”, Adv. Math., 206:2 (2006), 538–566  crossref  mathscinet  zmath  isi  scopus
    13. Henderson A., “Bases for certain cohomology representations of the symmetric group”, J. Algebraic Combin., 24:4 (2006), 361–390  crossref  mathscinet  zmath  isi  scopus
    14. Proudfoot N., “Hyperplane arrangements and $K$-theory”, Topology Appl., 153:15 (2006), 2866–2875  crossref  mathscinet  zmath  isi  scopus
    15. Gioan E., Las Vergnas M., “The active bijection between regions and simplices in supersolvable arrangements of hyperplanes”, Electron. J. Combin., 11:2 (2006), R30, 39 pp.  mathscinet  zmath  isi
    16. Schenck H.K., Suciu A.I., “Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-Gelfand correspondence”, Trans. Amer. Math. Soc., 358:5 (2006), 2269–2289  crossref  mathscinet  zmath  isi  scopus  scopus
    17. Jiang Guang-feng, Yu Jian-ming, “Reducibility of hyperplane arrangements”, Sci. China Ser. A, 50:5 (2007), 689–697  crossref  mathscinet  zmath  isi  scopus
    18. Orlik P., “Lectures on arrangements: Combinatorics and topology”, Algebraic Combinatorics, Universitext, 2007, 1  mathscinet  isi
    19. Delucchi E., “Shelling-type orderings of regular CW-complexes and acyclic matchings of the Salvetti complex”, Int. Math. Res. Not. IMRN, 2008, no. 6, rnm167, 39 pp.  crossref  mathscinet  zmath  isi  scopus
    20. Kämpf G., Römer T., “Homological properties of Orlik–Solomon algebras”, Manuscripta Math., 129:2 (2009), 181–210  crossref  mathscinet  zmath  isi  scopus
    21. Cohen D.C., “Resonance of basis-conjugating automorphism groups”, Proc. Amer. Math. Soc., 137:9 (2009), 2835–2841  crossref  mathscinet  zmath  isi  scopus
    22. Macinic A.D., “A Survey of Combinatorial Aspects in the Topology of Complex Hyperplane Arrangements”, Combinatorial Aspects of Commutative Algebra, Contemporary Mathematics, 502, 2009, 113–128  crossref  mathscinet  zmath  isi
    23. Cohen D.C., “Cohomology rings of almost-direct products of free groups”, Compos. Math., 146 (2010), 465–479  crossref  mathscinet  zmath  isi  scopus
    24. Etingof P., Henriques A., Kamnitzer J., Rains E., “The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points”, Ann. of Math., 171:2 (2010), 731–777  crossref  zmath  isi  scopus
    25. d'Antonio G., Gaiffi G., “Symmetric group actions on the cohomology of configurations in R-d”, Rendiconti Lincei-Matematica E Applicazioni, 21:3 (2010), 235–250  crossref  mathscinet  zmath  isi  scopus
    26. Cohen D.C., Farber M., “Topological complexity of collision-free motion planning on surfaces”, Compositio Mathematica, 147:2 (2011), 649–660  crossref  mathscinet  zmath  isi  scopus
    27. Milles J., “The Koszul Complex is the Cotangent Complex”, Int Math Res Not, 2012, no. 3, 607–650  crossref  mathscinet  zmath  isi  scopus
    28. Anderson L., Delucchi E., “Foundations for a Theory of Complex Matroids”, Discret. Comput. Geom., 48:4 (2012), 807–846  crossref  mathscinet  zmath  isi  elib  scopus
    29. Schenck H., “Hyperplane Arrangements: Computations and Conjectures”, Arrangements of Hyperplanes - Sapporo 2009, Advanced Studies in Pure Mathematics, 62, eds. Terao H., Yuzvinsky S., Math Soc Japan, 2012, 323–358  mathscinet  zmath  isi
    30. Dinh Le, Tim Römer, “Broken circuit complexes and hyperplane arrangements”, J Algebr Comb, 2013  crossref  mathscinet  isi  scopus
    31. Peter Lee, “The pure virtual braid group is quadratic”, Sel. Math. New Ser, 19:2 (2013), 461  crossref  mathscinet  zmath  isi  scopus
    32. Finis T., Lapid E., “Relation Spaces of Hyperplane Arrangements and Modules Defined By Graphs of Fiber Zonotopes”, Isr. J. Math., 201:2 (2014), 901–947  crossref  mathscinet  zmath  isi  scopus
    33. Kohno T., Pajitnov A., “Circle-Valued Morse Theory For Complex Hyperplane Arrangements”, 27, no. 4, 2015, 2113–2128  crossref  mathscinet  zmath  isi
    34. Dupont C., “the Orlik-Solomon Model For Hypersurface Arrangements”, 65, no. 6, 2015, 2507–2545  mathscinet  zmath  isi
    35. Macinic D.A., Matei D., Papadima S., “on the Second Nilpotent Quotient of Higher Homotopy Groups, For Hypersolvable Arrangements”, no. 24, 2015, 13194–13207  crossref  mathscinet  zmath  isi  scopus
    36. Cohen D.C., Schenck H.K., “Chen ranks and resonance”, Adv. Math., 285 (2015), 1–27  crossref  mathscinet  zmath  isi  scopus
    37. Hultman A., “Supersolvability and the Koszul Property of Root Ideal Arrangements”, 144, no. 4, 2016, 1401–1413  crossref  mathscinet  zmath  isi  scopus
    38. Aguirre L., Felder G., Veselov A.P., “Gaudin subalgebras and wonderful models”, Sel. Math.-New Ser., 22:3 (2016), 1057–1071  crossref  mathscinet  zmath  isi  elib  scopus
    39. Heckenberger I., Welker V., “A Deformation of the Orlik-Solomon Algebra”, Math. Scand., 118:2 (2016), 183–202  crossref  mathscinet  zmath  isi
    40. Bibby Ch., Hilburn J., “Quadratic-linear duality and rational homotopy theory of chordal arrangements”, Algebr. Geom. Topol., 16:5 (2016), 2637–2661  crossref  mathscinet  zmath  isi  scopus
    41. Bailet P., Yoshinaga M., “Vanishing Results For the Aomoto Complex of Real Hyperplane Arrangements Via Minimality”, J. Singul., 14 (2016), 74–90  crossref  mathscinet  zmath  isi  scopus
    42. Gedeon K., Proudfoot N., Young B., “The Equivariant Kazhdan-Lusztig Polynomial of a Matroid”, J. Comb. Theory Ser. A, 150 (2017), 267–294  crossref  mathscinet  zmath  isi  scopus
    43. Callegaro F., Delucchi E., “The Integer Cohomology Algebra of Toric Arrangements”, Adv. Math., 313 (2017), 746–802  crossref  mathscinet  zmath  isi  scopus
    44. Macinic D.A., Papadima S., Popescu C.R., “Modular Equalities For Complex Reflection Arrangements”, Doc. Math., 22 (2017), 135–150  mathscinet  zmath  isi
    45. Cohen D.C., “Topological Complexity of Classical Configuration Spaces and Related Objects”, Topological Complexity and Related Topics, Contemporary Mathematics, 702, eds. Grant M., Lupton G., Vandembroucq L., Amer Mathematical Soc, 2018, 41–60  crossref  mathscinet  zmath  isi  scopus
    46. Feigin M.V., Veselov A.P., “Boolean Or-Systems, Holonomy Lie Algebras, and Logarithmic Vector Fields”, Int. Math. Res. Notices, 2018, no. 7, 2070–2098  crossref  mathscinet  isi  scopus
    47. Babalic E.M., Doryn D., Lazaroiu C.I., Tavakol M., “On B-Type Open-Closed Landau-Ginzburg Theories Defined on Calabi-Yau Stein Manifolds”, Commun. Math. Phys., 362:1 (2018), 129–165  crossref  mathscinet  zmath  isi  scopus
    48. Darij Grinberg, “$t$-Unique Reductions for Mészáros's Subdivision Algebra”, SIGMA, 14 (2018), 078, 34 pp.  mathnet  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:642
    Full text:324
    First page:1

    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019