RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1980, Volume 35, Issue 6(216), Pages 47–68 (Mi umn3879)  

This article is cited in 126 scientific papers (total in 126 papers)

Holomorphic bundles over algebraic curves and non-linear equations

I. M. Krichever, S. P. Novikov


Full text: PDF file (1177 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1980, 35:6, 53–79

Bibliographic databases:

Document Type: Article
UDC: 517.9
MSC: 32L05, 35Q55, 35Q53, 28B05
Received: 05.07.1980

Citation: I. M. Krichever, S. P. Novikov, “Holomorphic bundles over algebraic curves and non-linear equations”, Uspekhi Mat. Nauk, 35:6(216) (1980), 47–68; Russian Math. Surveys, 35:6 (1980), 53–79

Citation in format AMSBIB
\Bibitem{KriNov80}
\by I.~M.~Krichever, S.~P.~Novikov
\paper Holomorphic bundles over algebraic curves and non-linear equations
\jour Uspekhi Mat. Nauk
\yr 1980
\vol 35
\issue 6(216)
\pages 47--68
\mathnet{http://mi.mathnet.ru/umn3879}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=601756}
\zmath{https://zbmath.org/?q=an:0501.35071|0548.35100}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1980RuMaS..35...53K}
\transl
\jour Russian Math. Surveys
\yr 1980
\vol 35
\issue 6
\pages 53--79
\crossref{https://doi.org/10.1070/RM1980v035n06ABEH001974}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1980ND05200003}


Linking options:
  • http://mi.mathnet.ru/eng/umn3879
  • http://mi.mathnet.ru/eng/umn/v35/i6/p47

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. B. A. Dubrovin, “Theta functions and non-linear equations”, Russian Math. Surveys, 36:2 (1981), 11–92  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. O. I. Mokhov, “Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve”, Russian Math. Surveys, 37:4 (1982), 129–130  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. P. G. Grinevich, “Rational solutions for the equation of commutation of differential operators”, Funct. Anal. Appl., 16:1 (1982), 15–19  mathnet  crossref  mathscinet  zmath  isi
    4. I. M. Krichever, “The Peierls model”, Funct. Anal. Appl., 16:4 (1982), 248–263  mathnet  crossref  mathscinet  isi
    5. S. I. Svinolupov, V. V. Sokolov, “Evolution equations with nontrivial conservative laws”, Funct. Anal. Appl., 16:4 (1982), 317–319  mathnet  crossref  mathscinet  zmath  isi
    6. M. S. Livšic, “Cayley-hamilton theorem, vector bundles and divisors of commuting operators”, Integr equ oper theory, 6:1 (1983), 250  crossref  mathscinet  zmath
    7. Russell A. Johnson, “A review of recent work on almost periodic differential and difference operators”, Acta Appl Math, 1:3 (1983), 241  crossref  mathscinet  zmath  isi
    8. I. M. Krichever, “The laplace method, algebraic curves, and nonlinear equations”, Funct. Anal. Appl., 18:3 (1984), 210–223  mathnet  crossref  mathscinet  zmath  isi
    9. L. Gagnon, J. Harnad, P. Winternitz, J. Hurtubise, “Abelian integrals and the reduction method for an integrable Hamiltonian system”, J Math Phys (N Y ), 26:7 (1985), 1605  crossref  mathscinet  zmath  adsnasa  isi
    10. P. G. Grinevich, “Vector rank of commuting matrix differential operators. Proof of S. P. Novikov's criterion”, Math. USSR-Izv., 28:3 (1987), 445–465  mathnet  crossref  mathscinet  zmath
    11. M. M. Kapranov, Yu. I. Manin, “The twistor transformation and algebraic-geometric constructions of solutions of the equations of field theory”, Russian Math. Surveys, 41:5 (1986), 33–61  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    12. I. M. Krichever, “Spectral theory of finite-zone nonstationary Schrödinger operators. A nonstationary Peierls model”, Funct. Anal. Appl., 20:3 (1986), 203–214  mathnet  crossref  mathscinet  zmath  isi
    13. A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “The symmetry approach to the classification of non-linear equations. Complete lists of integrable systems”, Russian Math. Surveys, 42:4 (1987), 1–63  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    14. F. Kh. Mukminov, V. V. Sokolov, “Integrable evolution equations with constraints”, Math. USSR-Sb., 61:2 (1988), 389–410  mathnet  crossref  mathscinet  zmath
    15. I. M. Krichever, S. P. Novikov, “Algebras of virasoro type, riemann surfaces and structures of the theory of solitons”, Funct. Anal. Appl., 21:2 (1987), 126–142  mathnet  crossref  mathscinet  zmath  isi
    16. M. R. Adams, J. Harnad, E. Previato, “Isospectral Hamiltonian flows in finite and infinite dimensions”, Comm Math Phys, 117:3 (1988), 451  crossref  mathscinet  zmath  adsnasa  isi
    17. I. M. Krichever, “Method of averaging for two-dimensional “integrable” equations”, Funct. Anal. Appl., 22:3 (1988), 200–213  mathnet  crossref  mathscinet  zmath  isi
    18. George Wilson, “On the quasi-Hamiltonian formalism of the KdV equation”, Physics Letters A, 132:8-9 (1988), 445  crossref
    19. F. Alberto Grünbaum, “Commuting pairs of linear ordinary differential operators of orders four and six”, Physica D: Nonlinear Phenomena, 31:3 (1988), 424  crossref
    20. I. M. Krichever, “Spectral theory of two-dimensional periodic operators and its applications”, Russian Math. Surveys, 44:2 (1989), 145–225  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    21. O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Math. USSR-Izv., 35:3 (1990), 629–655  mathnet  crossref  mathscinet  zmath
    22. F.Alberto Grünbaum, “The Kadomtsev-Petviashvili equation: An alternative approach to the “rank two” solutions of Krichever and Novikov”, Physics Letters A, 139:3-4 (1989), 146  crossref
    23. M. R. Adams, J. Harnad, J. Hurtubise, “Isospectral Hamiltonian flows in finite and infinite dimensions”, Comm Math Phys, 134:3 (1990), 555  crossref  mathscinet  zmath  adsnasa  isi
    24. S. P. Novikov, “Quantization of finite-gap potentials and nonlinear quasiclassical approximation in nonperturbative string theory”, Funct. Anal. Appl., 24:4 (1990), 296–306  mathnet  crossref  mathscinet  zmath  isi
    25. Geoff A. Latham, “Solutions of the KP equation associated to rank-three commuting differential operators over a singular elliptic curve”, Physica D: Nonlinear Phenomena, 41:1 (1990), 55  crossref
    26. F. Guil, M. Mañas, “Loop algebras and the Krichever-Novikov equation”, Physics Letters A, 153:2-3 (1991), 90  crossref
    27. I.Ya. Dorfman, F.W. Nijhoff, “On a (2+1)-dimensional version of the Krichever-Novikov equation”, Physics Letters A, 157:2-3 (1991), 107  crossref  elib
    28. M. A. Wisse, “Quasiperiodic solutions for matrix nonlinear Schrödinger equations”, J Math Phys (N Y ), 33:11 (1992), 3694  crossref  mathscinet  zmath  adsnasa  isi
    29. P M Santini, Inverse Probl, 8:2 (1992), 285  crossref  mathscinet  zmath  adsnasa  isi
    30. M. R. Adams, J. Harnad, J. Hurtubise, “Darboux coordinates and Liouville-Arnold integration in loop algebras”, Comm Math Phys, 155:2 (1993), 385  crossref  mathscinet  zmath  adsnasa  isi
    31. V. M. Buchstaber, I. M. Krichever, “Vector addition theorems and Baker–Akhiezer functions”, Theoret. and Math. Phys., 94:2 (1993), 142–149  mathnet  crossref  mathscinet  zmath  isi
    32. J. C. Hurtubise, “Finite-dimensional coadjoint orbits in loop algebras”, Lett Math Phys, 30:2 (1994), 99  crossref  mathscinet  zmath  adsnasa  isi
    33. F. Alberto Grünbaum, “Time-band limiting and the bispectral problem”, Comm Pure Appl Math, 47:3 (1994), 307  crossref  mathscinet  zmath  isi
    34. N A Kudryashov, J Phys A Math Gen, 27:7 (1994), 2457  crossref  mathscinet  zmath  adsnasa  isi
    35. Geoff A. Latham, “The computational approach to commuting ordinary differential operators of orders six and nine”, J Aust Math Soc Series B Appl Math, 35:4 (1994), 399  crossref  mathscinet  zmath  isi
    36. J. Harnad, P. Winternitz, “Classical and quantum integrable systems in 263-1263-1263-1and separation of variables”, Comm Math Phys, 172:2 (1995), 263  crossref  mathscinet  zmath  adsnasa  isi
    37. D. Levi, R. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on the lattice”, J Math Phys (N Y ), 38:12 (1997), 6648  crossref  mathscinet  zmath  adsnasa  isi  elib
    38. I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    39. I Krichever, S P Novikov, Inverse Probl, 15:6 (1999), R1  crossref  mathscinet  isi
    40. Yunbo Zeng, Wen-Xiu Ma, “Separation of variables for soliton equations via their binary constrained flows”, J Math Phys (N Y ), 40:12 (1999), 6526  crossref  mathscinet  zmath  isi  elib
    41. D. P. Novikov, “Algebraic-geometric solutions of the Krichever–Novikov equation”, Theoret. and Math. Phys., 121:3 (1999), 1567–1573  mathnet  crossref  crossref  mathscinet  zmath  isi
    42. Yunbo Zeng, J Phys A Math Gen, 33:3 (2000), 621  crossref  mathscinet  zmath  isi
    43. V. E. Adler, A. B. Shabat, R. I. Yamilov, “Symmetry approach to the integrability problem”, Theoret. and Math. Phys., 125:3 (2000), 1603–1661  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    44. I. M. Krichever, S. P. Novikov, “Holomorphic bundles and scalar difference operators: one-point constructions”, Russian Math. Surveys, 55:1 (2000), 180–181  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    45. I. M. Krichever, S. P. Novikov, “Holomorphic bundles and commuting difference operators. Two-point constructions”, Russian Math. Surveys, 55:3 (2000), 586–588  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    46. F.J. Plaza Martı́n, “Algebraic solutions of the multicomponent KP hierarchy”, Journal of Geometry and Physics, 36:1-2 (2000), 1  crossref
    47. A Dimakis, F Müller-Hoissen, J Phys A Math Gen, 34:43 (2001), 9163  crossref  mathscinet  zmath  adsnasa  isi
    48. O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    49. O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628  mathnet  mathscinet  zmath
    50. Maltsev A.Y., Novikov S.P., “On the local systems Hamiltonian in the weakly non-local Poisson brackets”, Physica D, 156:1–2 (2001), 53–80  crossref  mathscinet  zmath  adsnasa  isi  elib
    51. Abdul-Majid Wazwaz, “A computational approach to soliton solutions of the Kadomtsev–Petviashvili equation”, Applied Mathematics and Computation, 123:2 (2001), 205  crossref
    52. O. K. Sheinman, “Krichever–Novikov algebras and self-duality equations on Riemann surfaces”, Russian Math. Surveys, 56:1 (2001), 176–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    53. Sergei Igonin, Ruud Martini, “Prolongation structure of the Krichever Novikov equation”, J Phys A Math Gen, 35:46 (2002), 9801  crossref  mathscinet  zmath  isi  elib
    54. I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2:4 (2002), 717–752  mathnet  mathscinet  zmath  elib
    55. Nijhoff, FW, “Lax pair for the Adler (lattice Krichever-Novikov) system”, Physics Letters A, 297:1–2 (2002), 49  crossref  mathscinet  zmath  adsnasa  isi  elib
    56. Bobenko, AI, “Integrable systems on quad-graphs”, International Mathematics Research Notices, 2002, no. 11, 573  crossref  mathscinet  zmath  isi  elib
    57. J Ram rez, M S Bruz n, C Muriel, M L Gandarias, “The Schwarzian Korteweg de Vries equation in (2   1) dimensions”, J Phys A Math Gen, 36:5 (2003), 1467  crossref  mathscinet  zmath  adsnasa  isi  elib
    58. I. M. Krichever, S. P. Novikov, “Two-dimensionalized Toda lattice, commuting difference operators, and holomorphic bundles”, Russian Math. Surveys, 58:3 (2003), 473–510  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    59. M. S. Bruzón, M. L. Gandarias, C. Muriel, J. Ramíres, F. R. Romero, “Traveling-Wave Solutions of the Schwarz–Korteweg–de Vries Equation in $2+1$ Dimensions and the Ablowitz–Kaup–Newell–Segur Equation Through Symmetry Reductions”, Theoret. and Math. Phys., 137:1 (2003), 1378–1389  mathnet  crossref  crossref  mathscinet  isi  elib
    60. A. E. Mironov, “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2”, Sb. Math., 195:5 (2004), 711–722  mathnet  crossref  crossref  mathscinet  zmath  isi
    61. Adler, VE, “Q(4): Integrable master equation related to an elliptic curve”, International Mathematics Research Notices, 2004, no. 47, 2523  crossref  mathscinet  zmath  isi  elib
    62. A Ya Maltsev, “Weakly nonlocal symplectic structures, Whitham method and weakly nonlocal symplectic structures of hydrodynamic type”, J Phys A Math Gen, 38:3 (2005), 637  crossref  mathscinet  zmath  adsnasa  isi  elib
    63. Sheinman O.K., “Krichever-Novikov algebras and their representations”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemporary Mathematics Series, 391, 2005, 313–321  crossref  isi
    64. Krichever, I, “A characterization of Prym varieties”, International Mathematics Research Notices, 2006, 81476  mathscinet  zmath  isi  elib
    65. Igonin, S, “Coverings and fundamental algebras for partial differential equations”, Journal of Geometry and Physics, 56:6 (2006), 939  crossref  mathscinet  zmath  adsnasa  isi  elib
    66. J Ramírez, J L Romero, “New classes of solutions for the Schwarzian Korteweg–de Vries equation in (2+1) dimensions”, J Phys A Math Theor, 40:16 (2007), 4351  crossref  mathscinet  zmath  adsnasa  isi
    67. James Atkinson, Jarmo Hietarinta, Frank Nijhoff, “Seed and soliton solutions for Adler's lattice equation”, J Phys A Math Theor, 40:1 (2007), F1  crossref  mathscinet  zmath  isi
    68. O. K. Sheinman, “Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S85–S161  mathnet  crossref  crossref  zmath
    69. I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    70. J. Ramírez, J.L. Romero, M.S. Bruzón, M.L. Gandarias, “Multiple solutions for the Schwarzian Korteweg–de Vries equation in (2+1) dimensions”, Chaos, Solitons & Fractals, 32:2 (2007), 682  crossref  elib
    71. M. L. Gandarias, M. S. Bruzón, “New solutions of the Schwarzian Korteweg–de Vries equation in $2{+}1$ dimensions based on weak symmetries”, Theoret. and Math. Phys., 151:3 (2007), 752–761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    72. James Atkinson, “Bäcklund transformations for integrable lattice equations”, J Phys A Math Theor, 41:13 (2008), 135202  crossref  mathscinet  zmath  isi
    73. James Atkinson, Jarmo Hietarinta, Frank Nijhoff, “Soliton solutions for Q3”, J Phys A Math Theor, 41:14 (2008), 142001  crossref  mathscinet  zmath  isi
    74. D K Demskoi, V V Sokolov, “On recursion operators for elliptic models”, Nonlinearity, 21:6 (2008), 1253  crossref  mathscinet  zmath  adsnasa  isi  elib
    75. Ian Marshall, Michael Semenov-Tian-Shansky, “Poisson Groups and Differential Galois Theory of Schroedinger Equation on the Circle”, Comm Math Phys, 2008  crossref  mathscinet  isi
    76. O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    77. Decio Levi, Matteo Petrera, Christian Scimiterna, Ravil Yamilov, “On Miura Transformations and Volterra-Type Equations Associated with the Adler–Bobenko–Suris Equations”, SIGMA, 4 (2008), 077, 14 pp.  mathnet  crossref  mathscinet  zmath
    78. Matveev, VB, “30 years of finite-gap integration theory”, Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 366:1867 (2008), 837  crossref  mathscinet  zmath  adsnasa  isi  elib
    79. Mingxing Luo, Limei Li, “Almost periodic solutions of a -dimensional Schwarzian Korteweg de Vries equation”, Nonlinear Analysis: Theory, Methods & Applications, 69:12 (2008), 4452  crossref
    80. Marianna Euler, “Fourth-order recursion operators for third-order evolution equations”, Journal of Nonlinear Mathematical Physics, 15:2 (2008), 147  crossref
    81. James Atkinson, Frank Nijhoff, “Solutions of Adler’s Lattice Equation Associated with 2-Cycles of the Bäcklund Transformation”, Journal of Nonlinear Mathematical Physics, 15:sup3 (2008), 34  crossref
    82. M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    83. Anthony M. Bloch, Vasile Brînzănescu, Arieh Iserles, Jerrold E. Marsden, Tudor S. Ratiu, “A Class of Integrable Flows on the Space of Symmetric Matrices”, Comm Math Phys, 2009  crossref  isi
    84. S. P. Tsarev, E. S. Shemyakova, “Differential Transformations of Parabolic Second-Order Operators in the Plane”, Proc. Steklov Inst. Math., 266 (2009), 219–227  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    85. A. E. Mironov, “O kommutiruyuschikh differentsialnykh operatorakh ranga $2$”, Sib. elektron. matem. izv., 6 (2009), 533–536  mathnet  mathscinet  elib
    86. Annalisa Calini, Thomas Ivey, Gloria Marí-Beffa, “Remarks on KdV-type flows on star-shaped curves”, Physica D: Nonlinear Phenomena, 238:8 (2009), 788  crossref
    87. D Levi, P Winternitz, R I Yamilov, “Lie point symmetries of differential–difference equations”, J Phys A Math Theor, 43:29 (2010), 292002  crossref  elib
    88. İsmail Aslan, “The Exp-function approach to the Schwarzian Korteweg–de Vries equation”, Computers & Mathematics with Applications, 59:8 (2010), 2896  crossref
    89. Paul E Spicer, Frank W Nijhoff, Peter H van der Kamp, “Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm”, Nonlinearity, 24:8 (2011), 2229  crossref
    90. Decio Levi, Pavel Winternitz, Ravil I. Yamilov, “Symmetries of the Continuous and Discrete Krichever–Novikov Equation”, SIGMA, 7 (2011), 097, 16 pp.  mathnet  crossref  mathscinet
    91. M. S. Bruzón, M. L. Gandarias, “Classical and nonclassical symmetries for the Krichever–Novikov equation”, Theoret. and Math. Phys., 168:1 (2011), 875–885  mathnet  crossref  crossref  mathscinet  adsnasa
    92. O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    93. I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    94. Petr Vojčák, “On nonlocal symmetries for the Krichever–Novikov equation”, Physics Letters A, 2012  crossref
    95. M.S. Bruzón, M.L. Gandarias, “Symmetry reductions and traveling wave solutions for the Krichever-Novikov equation”, Math. Meth. Appl. Sci, 2012, n/a  crossref
    96. A. B. Zheglov, A. E. Mironov, “Moduli Beikera – Akhiezera, puchki Krichevera i kommutativnye koltsa differentsialnykh operatorov v chastnykh proizvodnykh”, Dalnevost. matem. zhurn., 12:1 (2012), 20–34  mathnet
    97. V. N. Davletshina, “O samosopryazhennykh kommutiruyuschikh differentsialnykh operatorakh ranga dva”, Sib. elektron. matem. izv., 10 (2013), 109–112  mathnet
    98. L.R. Galiakberova, N.H. Ibragimov, “Nonlinear self-adjointness of the Krichever-Novikov equation”, Communications in Nonlinear Science and Numerical Simulation, 2013  crossref
    99. A.E.. Mironov, “Self-adjoint commuting ordinary differential operators”, Invent. math, 2013  crossref
    100. Carlos Tomei, “The Toda lattice, old and new”, JGM, 5:4 (2013), 511  crossref
    101. A. V. Zotov, A. V. Smirnov, “Modifications of bundles, elliptic integrable systems, and related problems”, Theoret. and Math. Phys., 177:1 (2013), 1281–1338  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    102. Decio Levi, Eugenio Ricca, Zora Thomova, Pavel Winternitz, “Lie group analysis of a generalized Krichever-Novikov differential-difference equation”, J. Math. Phys, 55:10 (2014), 103503  crossref
    103. V. N. Davletshina, E. I. Shamaev, “On commuting differential operators of rank $2$”, Siberian Math. J., 55:4 (2014), 606–610  mathnet  crossref  mathscinet  isi
    104. N Delice, F.W. Nijhoff, S Yoo-Kong, “On elliptic Lax systems on the lattice and a compound theorem for hyperdeterminants”, J. Phys. A: Math. Theor, 48:3 (2015), 035206  crossref
    105. Alexander Bihlo, Xavier Coiteux-Roy, Pavel Winternitz, “The Korteweg–de Vries equation and its symmetry-preserving discretization”, J. Phys. A: Math. Theor, 48:5 (2015), 055201  crossref
    106. V. N. Davletshina, “Self-Adjoint Commuting Differential Operators of Rank 2 and Their Deformations Given by Soliton Equations”, Math. Notes, 97:3 (2015), 333–340  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    107. A. E. Mironov, B. T. Saparbayeva, “On the eigenfunctions of the one-dimensional Schrödinger operator with a polynomial potential”, Dokl. Math, 91:2 (2015), 171  crossref
    108. A. B. Zheglov, A. E. Mironov, “On commuting differential operators with polynomial coefficients corresponding to spectral curves of genus one”, Dokl. Math, 91:3 (2015), 281  crossref
    109. A.E.. Mironov, A.B.. Zheglov, “Commuting Ordinary Differential Operators with Polynomial Coefficients and Automorphisms of the First Weyl Algebra”, Int Math Res Notices, 2015, rnv218  crossref
    110. O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface”, Proc. Steklov Inst. Math., 290:1 (2015), 178–188  mathnet  crossref  crossref  isi  elib  elib
    111. O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theoret. and Math. Phys., 185:3 (2015), 1816–1831  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    112. Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846  mathnet  mathscinet  zmath  elib
    113. V. S. Oganesyan, “Commuting differential operators of rank 2 and arbitrary genus $g$ with polynomial coefficients”, Russian Math. Surveys, 70:1 (2015), 165–167  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    114. V. N. Davletshina, “Commuting differential operators of rank $2$ with trigonometric coefficients”, Siberian Math. J., 56:3 (2015), 405–410  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    115. V. S. Oganesyan, “Common Eigenfunctions of Commuting Differential Operators of Rank $2$”, Math. Notes, 99:2 (2016), 308–311  mathnet  crossref  crossref  mathscinet  isi  elib
    116. O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    117. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Polynomial Coefficients”, Funct. Anal. Appl., 50:1 (2016), 54–61  mathnet  crossref  crossref  mathscinet  isi  elib
    118. V. S. Oganesyan, “On operators of the form $\partial_x^4+u(x)$ from a pair of commuting differential operators of rank 2 and genus $g$”, Russian Math. Surveys, 71:3 (2016), 591–593  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    119. A. E. Mironov, “Self-adjoint commuting differential operators of rank two”, Russian Math. Surveys, 71:4 (2016), 751–779  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    120. A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva, “Commuting Krichever–Novikov differential operators with polynomial coefficients”, Siberian Math. J., 57:5 (2016), 819–823  mathnet  crossref  crossref  isi  elib  elib
    121. Davletshina V.N., Mironov A.E., “On Commuting Ordinary Differential Operators With Polynomial Coefficients Corresponding to Spectral Curves of Genus Two”, Bull. Korean. Math. Soc., 54:5 (2017), 1669–1675  crossref  isi
    122. O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121  mathnet  crossref  elib
    123. V. S. Oganesyan, “Commuting Differential Operators of Rank 2 with Rational Coefficients”, Funct. Anal. Appl., 52:3 (2018), 203–213  mathnet  crossref  crossref  isi  elib
    124. V. S. Oganesyan, “Alternative proof of Mironov's results on commuting self-adjoint operators of rank 2”, Siberian Math. J., 59:1 (2018), 102–106  mathnet  crossref  crossref  isi  elib
    125. V. S. Oganesyan, “The AKNS hierarchy and finite-gap Schrödinger potentials”, Theoret. and Math. Phys., 196:1 (2018), 983–995  mathnet  crossref  crossref  adsnasa  isi  elib
    126. Burban I. Zheglov A., “Fourier-Mukai Transform on Weierstrass Cubics and Commuting Differential Operators”, Int. J. Math., 29:10 (2018), 1850064  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:1070
    Full text:437
    References:59
    First page:6

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019