RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2001, Volume 56, Issue 2(338), Pages 221–222 (Mi umn392)  

This article is cited in 12 scientific papers (total in 12 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Flat pencils of metrics and integrable reductions of Lamé's equations

O. I. Mokhov

Landau Institute for Theoretical Physics, Centre for Non-linear Studies

DOI: https://doi.org/10.4213/rm392

Full text: PDF file (232 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2001, 56:2, 416–418

Bibliographic databases:

MSC: 53C21
Accepted: 01.02.2001

Citation: O. I. Mokhov, “Flat pencils of metrics and integrable reductions of Lamé's equations”, Uspekhi Mat. Nauk, 56:2(338) (2001), 221–222; Russian Math. Surveys, 56:2 (2001), 416–418

Citation in format AMSBIB
\Bibitem{Mok01}
\by O.~I.~Mokhov
\paper Flat pencils of metrics and integrable reductions of Lam\'e's equations
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 2(338)
\pages 221--222
\mathnet{http://mi.mathnet.ru/umn392}
\crossref{https://doi.org/10.4213/rm392}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1859717}
\zmath{https://zbmath.org/?q=an:1006.53017}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..416M}
\elib{http://elibrary.ru/item.asp?id=13892978}
\transl
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 2
\pages 416--418
\crossref{https://doi.org/10.1070/RM2001v056n02ABEH000392}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000171215300008}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035646221}


Linking options:
  • http://mi.mathnet.ru/eng/umn392
  • https://doi.org/10.4213/rm392
  • http://mi.mathnet.ru/eng/umn/v56/i2/p221

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. O. I. Mokhov, “Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability”, Funct. Anal. Appl., 36:3 (2002), 196–204  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type”, Theoret. and Math. Phys., 133:2 (2002), 1557–1564  mathnet  crossref  crossref  mathscinet  isi  elib
    3. O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Russian Math. Surveys, 57:1 (2002), 153–154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. O. I. Mokhov, “The Lax pair for non-singular pencils of metrics of constant Riemannian curvature”, Russian Math. Surveys, 57:3 (2002), 603–605  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. O. I. Mokhov, “Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature”, Russian Math. Surveys, 57:5 (2002), 999–1001  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. O. I. Mokhov, “Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature”, Theoret. and Math. Phys., 136:1 (2003), 908–916  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. O. I. Mokhov, “The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies”, Funct. Anal. Appl., 37:2 (2003), 103–113  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    8. O. I. Mokhov, “Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations”, Theoret. and Math. Phys., 138:2 (2004), 238–249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    9. O. I. Mokhov, “The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets”, Funct. Anal. Appl., 42:1 (2008), 33–44  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, Theoret. and Math. Phys., 167:1 (2011), 403–420  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    11. O. I. Mokhov, “O metrikakh diagonalnoi krivizny”, Fundament. i prikl. matem., 21:6 (2016), 171–182  mathnet
    12. O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Russian Math. Surveys, 72:5 (2017), 889–937  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:252
    Full text:106
    References:34
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019