RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2001, Volume 56, Issue 3(339), Pages 177–178 (Mi umn410)  

This article is cited in 9 scientific papers (total in 9 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

The derived category of coherent sheaves on $LG_3^{\mathbf C}$

A. V. Samokhin

Independent University of Moscow

DOI: https://doi.org/10.4213/rm410

Full text: PDF file (230 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2001, 56:3, 592–594

Bibliographic databases:

MSC: Primary 14F05; Secondary 18E30
Accepted: 29.03.2001

Citation: A. V. Samokhin, “The derived category of coherent sheaves on $LG_3^{\mathbf C}$”, Uspekhi Mat. Nauk, 56:3(339) (2001), 177–178; Russian Math. Surveys, 56:3 (2001), 592–594

Citation in format AMSBIB
\Bibitem{Sam01}
\by A.~V.~Samokhin
\paper The derived category of coherent sheaves on~$LG_3^{\mathbf C}$
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 3(339)
\pages 177--178
\mathnet{http://mi.mathnet.ru/umn410}
\crossref{https://doi.org/10.4213/rm410}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1859740}
\zmath{https://zbmath.org/?q=an:1075.14503}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..592S}
\transl
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 3
\pages 592--594
\crossref{https://doi.org/10.1070/RM2001v056n03ABEH000410}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000172123200014}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035629989}


Linking options:
  • http://mi.mathnet.ru/eng/umn410
  • https://doi.org/10.4213/rm410
  • http://mi.mathnet.ru/eng/umn/v56/i3/p177

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Samokhin A., “On the derived category of coherent sheaves on a 5-dimensional Fano variety”, C. R. Math. Acad. Sci. Paris, 340:12 (2005), 889–893  crossref  mathscinet  zmath  isi  scopus  scopus
    2. A. G. Kuznetsov, “Hyperplane sections and derived categories”, Izv. Math., 70:3 (2006), 447–547  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    3. Bohning Ch., “Derived categories of coherent sheaves on rational homogeneous manifolds”, Doc. Math., 11 (2006), 261–331  mathscinet  zmath  isi  elib
    4. Samokhin A., “Some remarks on the derived categories of coherent sheaves on homogeneous spaces”, J. Lond. Math. Soc. (2), 76 (2007), 122–134  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Kuznetsov A., “Exceptional collections for Grassmannians of isotropic lines”, Proc. Lond. Math. Soc. (3), 97 (2008), 155–182  crossref  mathscinet  zmath  isi  scopus  scopus
    6. A. Polishchuk, “K-theoretic exceptional collections at roots of unity”, J K-Theory, 2010, 1  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Buchweitz R.-O., Hille L., “Hochschild (Co-)Homology of Schemes with Tilting Object”, Trans. Am. Math. Soc., 365:6 (2013), 2823–2844  crossref  mathscinet  zmath  isi  elib  scopus
    8. Kuznetsov A. Polishchuk A., “Exceptional collections on isotropic Grassmannians”, J. Eur. Math. Soc., 18:3 (2016), 507–574  crossref  mathscinet  zmath  isi  elib  scopus
    9. Alexey Elagin, Valery Lunts, “On full exceptional collections of line bundles on del Pezzo surfaces”, Mosc. Math. J., 16:4 (2016), 691–709  mathnet  mathscinet
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:278
    Full text:78
    References:33
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019