RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1979, Volume 34, Issue 6(210), Pages 33–40 (Mi umn4148)  

This article is cited in 11 scientific papers (total in 11 papers)

International Topology Conference
Survey lectures

On the structure of spaces of continuous functions and their complete paracompactness

S. P. Gul'ko


Full text: PDF file (572 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1979, 34:6, 36–44

Bibliographic databases:

MSC: 46E10, 46A50

Citation: S. P. Gul'ko, “On the structure of spaces of continuous functions and their complete paracompactness”, Uspekhi Mat. Nauk, 34:6(210) (1979), 33–40; Russian Math. Surveys, 34:6 (1979), 36–44

Citation in format AMSBIB
\Bibitem{Gul79}
\by S.~P.~Gul'ko
\paper On~the~structure of~spaces of~continuous functions and their complete paracompactness
\jour Uspekhi Mat. Nauk
\yr 1979
\vol 34
\issue 6(210)
\pages 33--40
\mathnet{http://mi.mathnet.ru/umn4148}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=562814}
\zmath{https://zbmath.org/?q=an:0421.46020|0446.46014}
\transl
\jour Russian Math. Surveys
\yr 1979
\vol 34
\issue 6
\pages 36--44
\crossref{https://doi.org/10.1070/RM1979v034n06ABEH003289}


Linking options:
  • http://mi.mathnet.ru/eng/umn4148
  • http://mi.mathnet.ru/eng/umn/v34/i6/p33

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Shchepin, “Functors and uncountable powers of compacta”, Russian Math. Surveys, 36:3 (1981), 1–71  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. A. V. Arkhangel'skii, “Function spaces in the topology of pointwise convergence, and compact sets”, Russian Math. Surveys, 39:5 (1984), 9–56  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    3. Spiros A. Argyros, Yoav Benyamini, “Universal WCG Banach spaces and universal Eberlein Compacts”, Isr J Math, 58:3 (1987), 305  crossref  mathscinet  zmath  isi
    4. Charles Stegall, “A proof of the theorem of amir and lindenstrauss”, Isr J Math, 68:2 (1989), 185  crossref  mathscinet  zmath  isi
    5. Marián Fabian, Stanimir Troyanski, “A Banach space admits a locally uniformly rotund norm if its dual is a Vašák space”, Isr J Math, 69:2 (1990), 214  crossref  mathscinet  zmath  isi
    6. Charles Stegall, “The topology of certain spaces of measures”, Topology and its Applications, 41:1-2 (1991), 73  crossref
    7. V.V. Tkachuk, “A selection of recent results and problems in -theory”, Topology and its Applications, 154:12 (2007), 2465  crossref
    8. S.A. Argyros, A.D. Arvanitakis, S.K. Mercourakis, “Talagrand's problem”, Topology and its Applications, 155:15 (2008), 1737  crossref
    9. Vladimir V. Tkachuk, “Lindelöf Σ-spaces: an omnipresent class”, RACSAM, 104:2 (2010), 221  crossref
    10. Vladimir V. Tkachuk*, “Countably compact first countable subspaces of ordinals have the Sokolov property”, Quaestiones Mathematicae, 34:2 (2011), 225  crossref
    11. R. Rojas-Hernández, V.V. Tkachuk, “A monotone version of the Sokolov property and monotone retractability in function spaces”, Journal of Mathematical Analysis and Applications, 2013  crossref
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:248
    Full text:106
    References:20
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021