Uspekhi Matematicheskikh Nauk
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2001, Volume 56, Issue 4(340), Pages 159–160 (Mi umn432)  

This article is cited in 11 scientific papers (total in 11 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Relative widths of classes of differentiable functions in the $L^2$ metric

Yu. N. Subbotina, S. A. Telyakovskiib

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Steklov Mathematical Institute, Russian Academy of Sciences

DOI: https://doi.org/10.4213/rm432

Full text: PDF file (228 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2001, 56:4, 767–769

Bibliographic databases:

MSC: Primary 41A65; Secondary 41A46
Accepted: 21.06.2001

Citation: Yu. N. Subbotin, S. A. Telyakovskii, “Relative widths of classes of differentiable functions in the $L^2$ metric”, Uspekhi Mat. Nauk, 56:4(340) (2001), 159–160; Russian Math. Surveys, 56:4 (2001), 767–769

Citation in format AMSBIB
\Bibitem{SubTel01}
\by Yu.~N.~Subbotin, S.~A.~Telyakovskii
\paper Relative widths of classes of differentiable functions in the $L^2$ metric
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 4(340)
\pages 159--160
\mathnet{http://mi.mathnet.ru/umn432}
\crossref{https://doi.org/10.4213/rm432}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1861457}
\zmath{https://zbmath.org/?q=an:1036.41013}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..767S}
\transl
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 4
\pages 767--769
\crossref{https://doi.org/10.1070/RM2001v056n04ABEH000432}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000172882900017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0035639680}


Linking options:
  • http://mi.mathnet.ru/eng/umn432
  • https://doi.org/10.4213/rm432
  • http://mi.mathnet.ru/eng/umn/v56/i4/p159

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. V. N. Konovalov, “Approximation of Sobolev Classes by Their Finite-Dimensional Sections”, Math. Notes, 72:3 (2002), 337–349  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. Yu. N. Subbotin, S. A. Telyakovskii, “On Relative Widths of Classes of Differentiable Functions”, Proc. Steklov Inst. Math., 248 (2005), 243–254  mathnet  mathscinet  zmath
    3. Liu, YP, “Relative average widths of Sobolev spaces in L-2(R-d)”, Analysis Mathematica, 34:1 (2008), 71  crossref  mathscinet  zmath  isi  scopus  scopus
    4. Liu, YP, “Relative widths of smooth functions determined by fractional order derivatives”, Journal of Complexity, 24:2 (2008), 259  crossref  mathscinet  zmath  isi  scopus  scopus
    5. Xu, GQ, “The relative n-widths of Sobolev classes with restrictions”, Journal of Approximation Theory, 157:1 (2009), 19  crossref  mathscinet  isi  scopus  scopus
    6. Xiao Weiwei, “Relative infinite-dimensional width of Sobolev classes W-p(r)(R)”, Journal of Mathematical Analysis and Applications, 369:2 (2010), 575–582  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    7. Xiao W., “Relative widths of function classes of L (2)(T) defined by a linear differential operator in L (q) (T)”, Anal Math, 37:1 (2011), 65–81  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. Weiwei Xiao, Weijun Luan, “Relative Widths of Some Sets of l<sup>m</sup><sub>p</sub>”, APM, 01:02 (2011), 30  crossref
    9. Yu. N. Subbotin, S. A. Telyakovskii, “On the Relative Widths of Ellipsoids in Hilbert Space”, Math. Notes, 91:3 (2012), 449–452  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. S. P. Sidorov, “Linear Relative -Widths for Linear Operators Preserving an Intersection of Cones”, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), 1  crossref  mathscinet  scopus  scopus
    11. Yu. V. Malykhin, “Relative widths of Sobolev classes in the uniform and integral metrics”, Proc. Steklov Inst. Math., 293 (2016), 209–215  mathnet  crossref  crossref  mathscinet  isi  elib  elib
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:325
    Full text:164
    References:68
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021