RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 2001, Volume 56, Issue 5(341), Pages 187–188 (Mi umn446)  

This article is cited in 13 scientific papers (total in 13 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Hirzebruch genus of a manifold supporting a Hamiltonian circle action

K. E. Feldman

University of Edinburgh

DOI: https://doi.org/10.4213/rm446

Full text: PDF file (230 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 2001, 56:5, 978–979

Bibliographic databases:

MSC: 53D20, 37J10
Accepted: 22.08.2001

Citation: K. E. Feldman, “Hirzebruch genus of a manifold supporting a Hamiltonian circle action”, Uspekhi Mat. Nauk, 56:5(341) (2001), 187–188; Russian Math. Surveys, 56:5 (2001), 978–979

Citation in format AMSBIB
\Bibitem{Fel01}
\by K.~E.~Feldman
\paper Hirzebruch genus of a~manifold supporting a~Hamiltonian circle action
\jour Uspekhi Mat. Nauk
\yr 2001
\vol 56
\issue 5(341)
\pages 187--188
\mathnet{http://mi.mathnet.ru/umn446}
\crossref{https://doi.org/10.4213/rm446}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1892568}
\zmath{https://zbmath.org/?q=an:1051.57040}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?2001RuMaS..56..978F}
\transl
\jour Russian Math. Surveys
\yr 2001
\vol 56
\issue 5
\pages 978--979
\crossref{https://doi.org/10.1070/RM2001v056n05ABEH000446}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000173791600005}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039149367}


Linking options:
  • http://mi.mathnet.ru/eng/umn446
  • https://doi.org/10.4213/rm446
  • http://mi.mathnet.ru/eng/umn/v56/i5/p187

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kim Min Kyu, “Frankel's theorem in the symplectic category”, Trans. Amer. Math. Soc., 358:10 (2006), 4367–4377  crossref  mathscinet  zmath  isi  scopus  scopus
    2. Buchstaber V.M., Ray N., “An invitation to toric topology: Vertex four of a remarkable tetrahedron”, Toric Topology, Contemporary Mathematics Series, 460, 2008, 1–27  crossref  mathscinet  zmath  isi
    3. McDuff D., “Loops in the Hamiltonian group: a survey”, Symplectic Topology and Measure Preserving Dynamical Systems, Contemporary Mathematics, 512, 2010, 127–148  crossref  mathscinet  zmath  isi
    4. Pelayo A., San Vu Ngoc, “Symplectic Theory of Completely Integrable Hamiltonian Systems”, Bull Amer Math Soc, 48:3 (2011), 409–455  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    5. Bogusław Hajduk, Krzysztof Pawałowski, Aleksy Tralle, “Non-symplectic smooth circle actions on symplectic manifolds”, Math. Slovaca, 62:3 (2012), 539  crossref  mathscinet  zmath  isi  scopus  scopus
    6. Li P., “The Rigidity of Dolbeault-Type Operators and Symplectic Circle Actions”, Proc. Amer. Math. Soc., 140:6 (2012), 1987–1995  crossref  mathscinet  zmath  isi  scopus  scopus
    7. Ping Li, “A gap theorem of Kähler manifolds with vanishing odd Betti numbers”, Differential Geometry and its Applications, 31:3 (2013), 331  crossref  mathscinet  zmath  isi  scopus  scopus
    8. A. A. Kustarev, “Almost complex circle actions with few fixed points”, Russian Math. Surveys, 68:3 (2013), 574–576  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. Mazzeo R., Pelayo A., Ratiu T.S., “L-2-Cohomology and Complete Hamiltonian Manifolds”, J. Geom. Phys., 87 (2015), 305–313  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Lin Y., Pelayo A., “Log-Concavity and Symplectic Flows”, 22, no. 2, 2015, 501–527  mathscinet  zmath  isi
    11. Godinho L., Pelayo A., Sabatini S., “Fermat and the number of fixed points of periodic flows”, Commun. Number Theory Phys., 9:4 (2015), 643–687  crossref  mathscinet  zmath  isi  scopus  scopus
    12. Tolman S., “Non-Hamiltonian Actions With Isolated Fixed Points”, Invent. Math., 210:3 (2017), 877–910  crossref  mathscinet  zmath  isi  scopus  scopus
    13. Lindsay N., Panov D., “S1-Invariant Symplectic Hypersurfaces in Dimension 6 and the Fano Condition”, J. Topol., 12:1 (2019), 221–285  crossref  mathscinet  zmath  isi  scopus
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:345
    Full text:129
    References:65
    First page:2

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020