RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor
Subscription
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uspekhi Mat. Nauk, 1992, Volume 47, Issue 3(285), Pages 161–162 (Mi umn4521)  

This article is cited in 17 scientific papers (total in 17 papers)

In the Moscow Mathematical Society
Communications of the Moscow Mathematical Society

Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields

I. A. Dynnikov


Full text: PDF file (137 kB)
References: PDF file   HTML file

English version:
Russian Mathematical Surveys, 1992, 47:3, 172–173

Bibliographic databases:

MSC: 57M10, 55Pxx, 57R40
Received: 20.01.1992

Citation: I. A. Dynnikov, “Proof of S. P. Novikov's conjecture for the case of small perturbations of rational magnetic fields”, Uspekhi Mat. Nauk, 47:3(285) (1992), 161–162; Russian Math. Surveys, 47:3 (1992), 172–173

Citation in format AMSBIB
\Bibitem{Dyn92}
\by I.~A.~Dynnikov
\paper Proof of S.\,P.~Novikov's conjecture for the case of small perturbations of rational magnetic fields
\jour Uspekhi Mat. Nauk
\yr 1992
\vol 47
\issue 3(285)
\pages 161--162
\mathnet{http://mi.mathnet.ru/umn4521}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=1185309}
\zmath{https://zbmath.org/?q=an:0778.58016}
\adsnasa{http://adsabs.harvard.edu/cgi-bin/bib_query?1992RuMaS..47..172D}
\transl
\jour Russian Math. Surveys
\yr 1992
\vol 47
\issue 3
\pages 172--173
\crossref{https://doi.org/10.1070/RM1992v047n03ABEH000901}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=A1992KU98000010}


Linking options:
  • http://mi.mathnet.ru/eng/umn4521
  • http://mi.mathnet.ru/eng/umn/v47/i3/p161

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. I. A. Dynnikov, “S. P. Novikov's problem on the semiclassical motion of an electron”, Russian Math. Surveys, 48:2 (1993), 173–174  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. I. A. Dynnikov, “Proof of S. P. Novikov's conjecture on the semiclassical motion of an electron”, Math. Notes, 53:5 (1993), 495–501  mathnet  crossref  mathscinet  zmath  isi  elib
    3. S.P. Novikov, Andrei Ya. Mal'tsev, “Topological phenomena in normal metals”, Uspekhi Fizicheskikh Nauk, 168:3 (1998), 249  mathnet  crossref
    4. I. A. Dynnikov, “The geometry of stability regions in Novikov's problem on the semiclassical motion of an electron”, Russian Math. Surveys, 54:1 (1999), 21–59  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Maltsev, AY, “Quasiperiodic functions and dynamical systems in quantum solid state physics”, Bulletin Brazilian Mathematical Society, 34:1 (2003), 171  crossref  mathscinet  zmath  isi  elib
    6. Andrei Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas”, J Math Phys (N Y ), 45:3 (2004), 1128  crossref  mathscinet  zmath  isi  elib
    7. Maltsev, AY, “Dynamical systems, topology, and conductivity in normal metals”, Journal of Statistical Physics, 115:1–2 (2004), 31  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. I. A. Dynnikov, S. P. Novikov, “Topology of quasi-periodic functions on the plane”, Russian Math. Surveys, 60:1 (2005), 1–26  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    9. De Leo, R, “First-principles generation of stereographic maps for high-field magneto resistance in normal metals: An application to Au and Ag”, Physica B-Condensed Matter, 362:1–4 (2005), 62  crossref  adsnasa  isi
    10. De Leo, R, “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron”, Experimental Mathematics, 15:1 (2006), 109  mathscinet  zmath  isi  elib
    11. Maltsev A.Y., Novikov S.P., “Topology, quasiperiodic functions, and the transport phenomena”, Topology in Condensed Matter, Springer Series in Solid-State Sciences, 150, 2006, 31–59  crossref  isi
    12. Maltsev A.Ya., “Oscillation Phenomena and Experimental Determination of Exact Mathematical Stability Zones For Magneto-Conductivity in Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 125:5 (2017), 896–905  crossref  isi
    13. A. Ya. Maltsev, S. P. Novikov, “The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems”, Proc. Steklov Inst. Math., 302 (2018), 279–297  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Maltsev A.Ya., “The Second Boundaries of Stability Zones and the Angular Diagrams of Conductivity For Metals Having Complicated Fermi Surfaces”, J. Exp. Theor. Phys., 127:6 (2018), 1087–1111  crossref  isi  scopus
    15. A. Ya. Maltsev, S. P. Novikov, “Topological integrability, classical and quantum chaos, and the theory of dynamical systems in the physics of condensed matter”, Russian Math. Surveys, 74:1 (2019), 141–173  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    16. Maltsev A.Ya., “the Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields”, J. Exp. Theor. Phys., 129:1 (2019), 116–138  crossref  isi
    17. Novikov S.P. De Leo R. Dynnikov I.A. Maltsev A.Ya., “Theory of Dynamical Systems and Transport Phenomena in Normal Metals”, J. Exp. Theor. Phys., 129:4, SI (2019), 710–721  crossref  isi
  • Успехи математических наук Russian Mathematical Surveys
    Number of views:
    This page:507
    Full text:110
    References:35
    First page:3

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020